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Abstract

Hybrid deep neural network–hidden Markov model (DNN-HMM) systems have become the state-of-the-art in automatic speech
recognition. In this paper we experiment with DNN-HMM phone recognition systems that use measured articulatory information.
Deep neural networks are both used to compute phone posterior probabilities and to perform acoustic-to-articulatory mapping
(AAM). The AAM processes we propose are based on deep representations of the acoustic and the articulatory domains. Such
representations allow to: (i) create different pre-training configurations of the DNNs that perform AAM; (ii) perform AAM on
a transformed (through DNN autoencoders) articulatory feature (AF) space that captures strong statistical dependencies between
articulators. Traditionally, neural networks that approximate the AAM are used to generate AFs that are appended to the observation
vector of the speech recognition system. Here we also study a novel approach (AAM-based pretraining) where a DNN performing
the AAM is instead used to pretrain the DNN that computes the phone posteriors. Evaluations on both the MOCHA-TIMIT msak0
and the mngu0 datasets show that: (i) the recovered AFs reduce phone error rate (PER) in both clean and noisy speech conditions,
with a maximum 10.1% relative phone error reduction in clean speech conditions obtained when autoencoder-transformed AFs are
used; (ii) AAM-based pretraining could be a viable strategy to exploit the available small articulatory datasets to improve acoustic
models trained on large acoustic-only datasets.
© 2015 Elsevier Ltd. All rights reserved.
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1.  Introduction

The steady increase of training data and computational resources combined with the use of new machine learning
strategies for acoustic modeling has been continuously improving ASR performance in the last few years. Deep neural
networks (DNNs) (Hinton et al., 2006), either combined with HMMs or used in a recurrent architecture, are the best
strategy for acoustic modeling (Mohamed et al., 2012; Dahl et al., 2012; Graves et al., 2013).
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However, despite the impressive results shown by DNN-based ASR, there are several real usage scenarios where
ASR technology still needs large improvements. In general, ASR accuracy significantly decreases in mismatched
training-testing conditions, as it has been shown for traditional Gaussian mixture model (GMM)-HMMs systems in,
e.g., speaking style mismatched conditions (Yu et al., 1999), and for DNN-HMM systems in, e.g., environment and
microphone mismatched conditions (Seltzer et al., 2013).

Other than simply increasing the number of training conditions we can explicitly address the speech modeling
limitations responsible for the lack of generalization underlying the mismatched conditions problem. For example,
context-dependent (CD)-DNN-HMMs, as well as GMM-HMMs, handle context effects (like, e.g., coarticulation
effects) using hundreds/thousands of tied context dependent sub-phonetic states, i.e., senones (Dahl et al., 2012).
The selection, either automatic or manual, of the number of senones (and, consequently, of learning parameters) may
be affected by the number of conditions in the training dataset and, at the same time, by the invariance of the input
feature set to those conditions (see, e.g., (Schaaf and Metze, 2010) where the portion of gender-dependent senones
depends on the feature set used).

The senones themselves result from the need to reduce learning parameters and are created by exploiting some
speech production knowledge in the form of speech production-based questions in the state clustering tree. However
ASR may benefit from a more explicit use of speech production knowledge where speech production can be used as,
e.g., additional observations appended to the vector of acoustic observations, or as hidden structure connecting the
phonological level (i.e., the HMM hidden phonetic states) to the observed speech acoustics.

Such approaches are motivated by the fact that complex phenomena observed in speech, for which a simple purely
acoustic description has still to be found, can be easily and compactly described in speech production-based repre-
sentations (notably Browman and Goldstein, 1992; Jakobson et al., 1952; Chomsky and Halle, 1968). For example, in
Articulatory Phonology (Browman and Goldstein, 1992) or in the distinctive features framework (Jakobson et al., 1952;
Chomsky and Halle, 1968) coarticulation effects can be compactly modeled as temporal overlaps of few vocal tract
gestures. The vocal tract gestures are regarded as invariant, i.e., context- and speaker-independent, production targets
that contribute to the realization of a phonetic segment. Obviously the invariance of a vocal tract gesture partly depends
on the degree of abstraction of the representation but speech production representations offer compact descriptions of
complex phenomena and of phonetic targets that purely acoustic representations are not able to provide yet (see, e.g.,
Maddieson, 1997).

Additional motivations to the use of speech production in ASR come from theories of speech perception such as the
well known Motor Theory of speech perception (Liberman et al., 1967; Galantucci et al., 2006) which assumes that
the perception of speech is the perception of motor gestures and involves access to the motor system. Such claims are
partly supported by neurophysiological studies that show the contribution of the activity of the motor cortex to speech
perception (DAusilio et al., 2009; Bartoli et al., 2013).

In the last two decades several strategies have been proposed for an explicit use of speech production knowledge in
ASR (see King et al., 2007, for an extensive review). Here we review studies where measured articulatory data are used
for ASR. Such studies require simultaneous recordings of audio and articulatory data. Articulatory movements are
recorded using techniques such as electro-magnetic articulography (EMA) (Wrench, 2000), X-rays (Westbury, 1994),
ultrasounds (e.g., Grimaldi et al., 2008), and MRI (Narayanan et al., 2004).

The approaches that use measured articulatory data can be roughly grouped into two categories. In the first category
(e.g., Stephenson et al., 2000; Markov et al., 2006; Mitra et al., 2012) articulatory information is represented as discrete
latent variables which are observed during training but hidden during testing. The idea behind this approach is to
explicitly and compactly model speech production processes that are among the main causes of acoustic variability (e.g.,
variability due to coarticulation effects). In the second category (e.g., Zlokarnik, 1995; Wrench and Richmond, 2000),
which the present work belongs to, articulatory features (AFs) are recovered from speech acoustics and then appended
to the vector of observed acoustic features. In this case the working hypothesis is that the recovered articulatory domain
(combined with the acoustic domain) represents a transformation of the acoustic domain into a new speech-production
constrained domain which is more invariant over different conditions and where phonetic-articulatory targets can be
more easily discriminated.

We first review some of the studies belonging to the first category. In Stephenson et al. (2000) the articulatory
information is represented by a single discrete articulatory variable within a dynamic Bayesian network (DBN). Its
values are computed by clustering data points in a space defined by eight articulator sagittal positions (upper lip, lower
lip, four tongue positions, lower front teeth, lower back teeth). The acoustic observation probability distribution is
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