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a b s t r a c t

The Quadratic Finite Element Model Updating Problem (QFEMUP) concerns with updating
a symmetric second-order finite element model so that it remains symmetric and the
updated model reproduces a given set of desired eigenvalues and eigenvectors by
replacing the corresponding ones from the original model. Taking advantage of the
special structure of the constraint set, it is first shown that the QFEMUP can be formulated
as a suitable constrained nonlinear programming problem. Using this formulation, a
method based on successive optimizations is then proposed and analyzed. To avoid that
spurious modes (eigenvectors) appear in the frequency range of interest (eigenvalues)
after the model has been updated, additional constraints based on a quadratic Rayleigh
quotient are dynamically included in the constraint set. A distinct practical feature of the
proposed method is that it can be implemented by computing only a few eigenvalues and
eigenvectors of the associated quadratic matrix pencil.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The Quadratic Finite Element Model Updating Problem (QFEMUP) concerns with updating a finite-element generated
model of a vibrating structure of the form

M €xðtÞþD _xðtÞþKxðtÞ ¼ 0; ð1Þ
where M, D, and K are real n� n matrices known as mass, damping, and stiffness, respectively; and _xðtÞ and €xðtÞ denote the
first and second derivatives of the time-dependent vector x(t). The eigenvalues of the associated quadratic pencil

Q ðλÞ ¼ λ2MþλDþK ð2Þ
are related to natural frequencies and the eigenvectors are the mode shapes of the vibrating system (1) (see, e.g., [18,19,29]).
The quadratic pencil (2) has 2n eigenvalues and 2n eigenvectors. The dynamics of the system are modeled by these
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eigenvalues and eigenvectors. For example, it is well-known that the stability of a vibrating system is determined by the
nature of a few dominating natural frequencies. It is also well-known that sometimes the vibrating structures experience
dangerous vibrations, called resonance, when a natural frequency becomes close or equal to a frequency of an external force,
such as earthquake, gusty wind, weights of the human bodies, among others. Failures of many structures like buildings,
bridges, airplane wings, and turbines have been attributed to resonance.

Eq. (1) is usually obtained by discretization of a distributed parameter system with finite element techniques, and
therefore, known as the finite element model. The matrices M, D, and K are often very large and sparse but have some
structure, such as M is symmetric and positive definite ðM¼MT 40Þ and often diagonal, and D and K are symmetric (D¼DT

and K ¼ KT ).
The QFEMUP consists in updating the quadratic pencil Q ðλÞ to another quadratic pencil

~Q ðλÞ ¼ λ2Mþλ ~Dþ ~K ð3Þ
in such a way that a small number 1rpo2n of given measured eigenvalues and eigenvectors from a real-life structure or
an experimental structure are reproduced by the updated pencil. Besides the basic requirements of preserving the
symmetry and sparsity pattern of the new matrices ~D and ~K and reproducing the p measured eigenvalues and eigenvectors,
there are certain other engineering issues that must be taken into account while solving the problem in practice. For
instance, it is important that the new matrices ~D and ~K are as close as possible to the original ones D and K, respectively,
which imposes an optimization approach. It is also very important that no spurious modes appear in the frequency range of
interest after the model has been updated; see [25]. The so-called no spill-over constraint which, assuming that the p
eigenpairs to be replaced are known, forces the additional 2n�p eigenvalues and corresponding eigenvectors to remain
unchanged, clearly guarantees that no spurious modes will appear in the frequency range of interest. Several numerical
schemes have been recently proposed to accomplish all the mentioned requirements, including the no spill-over constraint,
for several different scenarios; see, e.g., [6,12–17,21,22,23,24,29-31,35] and references in there. In most cases, the no spill-
over constraint is accomplished by using some clever linear algebra theoretical results that involve the solution of several
large-scale matrix equations (Lyapunov, Sylvester, and block linear systems); see, e.g., [13,14,31,35].

In several important applications, instead of forcing the no spill-over constraint, what is important from a practical point
of view is to guarantee that spurious modes are not introduced into the frequency range of interests (see [25]). For this
scenario, we present in this paper a new optimization approach that not only maintains the symmetry, the sparsity
structure, and the nearness of the matrices ~D and ~K , while reproducing the p measured eigenvalues and eigenvectors, but
also pays special attention to the fundamental engineering requirement of making sure that no spurious modes appear in
the frequency range of interest. In this work, we accomplish all these requirements without forcing the no spill-over
constraint. For that, our new scheme combines an optimization procedure with the dynamical inclusion of additional
constraints in an inner–outer iterative scheme. The additional constraints are based on a suitable recent extension of the
Rayleigh quotient for quadratic eigenvalue problems [27,36]. A key practical feature of the proposed scheme is that it can be
implemented by computing only a few additional eigenvalues and eigenvectors of the associated quadratic matrix pencil.

Variations of finite element model updating problems, with different levels of difficulty, have been solved in the
past using iterative numerical optimization techniques of several types and for different objective functions; see, e.g.,
[1,6–8,12,20,34]. In particular, the ones that guarantee the no spill-over constraint need to solve several large-scale matrix
equations for each function and gradient evaluation, which require a computational cost of Oðpn3Þ floating point operations
(flops) per iteration; see, e.g., [6,12].

The rest of the paper is organized as follows. In Section 2, we formulate the QFEMUP as a constrained optimization
problem and describe the variables and the constrains, including the way of forcing the matrices' sparsity structure and
symmetry. In Section 3, we describe the suitable use of the Rayleigh quotient for quadratic eigenvalue problems for building
the constraints or cuts, to avoid when necessary the presence of spurious modes in the frequency range of interest. We also
describe in detail the inner–outer iterative scheme, and discuss its theoretical properties. In Section 4, we show the
performance of our scheme on some illustrative examples. Concluding remarks are presented in Section 5.

2. Mathematical programming formulation

Consider the quadratic pencil Q ðλÞ given by (2), where M;D;KARn�n are given matrices such that M is symmetric
positive definite and D and K are symmetric. Let 1rpo2n, λiAC, and xiACn be such that ðλi; xiÞ for i¼ 1;…; p are the
desired eigenpairs. The goal is to find matrices ~D; ~KARn�n such that ðλi; xiÞ are eigenpairs of the updated quadratic
eigenpencil ~Q ðλÞ given by (3), i.e.,

ðλ2i Mþλi ~Dþ ~K Þxi ¼ 0; i¼ 1;…; p: ð4Þ
Matrices ~D ¼ ð ~dijÞ and ~K ¼ ð ~kijÞ must be symmetric and must preserve the sparsity pattern of D¼ ðdijÞ and K ¼ ðkijÞ,
respectively. In addition, ~D and ~K must be as close as possible to D and K, respectively.

Let ID and IK be the sets of indexes of non-zero elements in the upper triangle of the given matrices D and K, respectively,
i.e.,

ID ¼ fði; jÞj1r ir jrn such that dija0g ð5Þ
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