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a b s t r a c t

The identification of the modal parameters from frequency response functions is a subject
that is not new. However, the starting point often comes from the equations that govern
the dynamic motion. In this paper, a novel approach is shown, resulting from an analysis
that starts on the dissipated energy per cycle of vibration. Numerical and experimental
examples were used in order to assess the effectiveness of the proposed method. It was
shown that, for lightly damped systems with conveniently spaced modes, it produced
quite accurate results when compared to those obtained from the method of the inverse.
The technique also proved to be simple enough to be used for quick estimates of the
modal damping factors. Finally, this paper is a contribution to modal analysis and
identification methods, as the developed technique has never been proposed before.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Modal identification seeks to obtain the global and local characteristics of vibrating structures using experimental data.
This technique may be used either to obtain the global characteristics (natural frequencies and damping), to directly derive a
mathematical model of the structure or to improve an existing finite element model through what is frequently called
updating. The interest of modal identification procedures is acknowledged by the scientific community and many authors
have addressed this problem, mainly since the early seventies of the past century [1]. The proposed modal identification
procedures cover different levels of sophistication and, in almost all cases, need the use of special software that may not be
easy to obtain.

In the past few years, attention has been more focused on Operational Modal Analysis (OMA) rather than in the more
traditional Experimental Modal Analysis (EMA). Examples of later developments in OMA identification methods can be
found, for instance, in [2–5]. In terms of EMA, later publications are more concerned with Engineering applications, as can
be seen, for instance, in [6,7]. OMA deals with operational deflection shapes and many often make use of output-only
measurements, this meaning that excitation loads are unknown. EMA makes use of both input forces and output responses
in order to determine modal parameters and mode shapes. Numerous modal identification algorithms have been developed
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in the past thirty years [8]. However, even if in the past recent years not many advances have been seen in terms of EMA
modal identification methods, there are a few interesting results that can still be derived.

If the sole objective is the determination of the global modal characteristics, it is possible to use simple approaches
producing quick estimates of the desired information. This issue is addressed in this paper where a new simple method is
proposed, based on the dissipated energy per cycle of vibration. The proposed methodology is a robust estimator, provided
the systems under analysis are not heavily damped and the modes are sufficiently separated so that their mutual
interference may be assumed as negligible.

This paper presents the proposed new methodology and applies it to both numerical and experimental examples,
showing that it yields reasonably accurate results.

2. Theoretical development

2.1. Definitions

The concept of a complex stiffness in vibration problems with viscous or structural (hysteretic) damping is something
that has been known for decades. Most often the complex stiffness is defined as the sum of the stiffness itself (k, real part)
and the damping coefficient (d, imaginary part):

kn ¼ kþ id ð1Þ

To find the real and imaginary parts of the complex stiffness, it is easier if the more conventional viscous damping model
is firstly introduced. The well-known second order differential equation of motion - for a single degree-of-freedom system
(SDOF) – is given by:

m€xþc_xþkx¼ Feiωt ð2Þ

wherem is the mass, c is the viscous damping coefficient, k is the stiffness, F is the amplitude of the oscillatory force and t is
the time variable. When excited by an harmonic force with frequencyω, it can easily be proven (and most fundamental texts
on vibration theory show it, for instance [1,9]) that for each vibration cycle the system dissipates – through its viscous
damper – a quantity of energy directly proportional to the damping coefficient, the excitation frequency and the square of
the response amplitude X:

Wdiss ¼
Z T

0
f _xdt ¼ πcωX2 ð3Þ

where T ¼ 2π=ω is the time period of oscillation. However, experimental evidence from tests performed on a large variety of
materials show that the damping due to internal friction (material hysteresis) is nearly independent of the forcing frequency
but still proportional to the square of the response amplitude [10], i.e.

WdisspCX2 ð4Þ

where C is a constant. Therefore, from Eqs. (3) and (4) the equivalent damping coefficient is:

c¼ C
πω

¼ d
ω

ð5Þ

with d¼ C=ω. In such conditions, Eq. (2) can be re-written as:

m€xþ d
ω
_xþkx¼ Feiωt ð6Þ

As _x¼ iωx for a harmonic vibration, the previous equation may be re-written as:

m€xþkð1þ iηÞx¼ Feiωt ð7Þ

where

η¼ d=k ð8Þ

is known as the hysteretic damping ratio or damping loss factor. The quantity:

kn ¼ kð1þ iηÞ ð9Þ

is the same complex stiffness as initially described in Eq. (1).
The latter formulation (7) leads to the conclusion that the dissipated energy per cycle of vibration is independent of the

forcing frequency.
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