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Optimal linear estimators (OLEs) are designed for networked control systems (NCSs) with stochastic 
uncertainties, multiple sensors and multiple packet loss rates. Packet losses of both sides from sensors to 
an estimator (S–E) and from a controller to an actuator (C–A) are taken into account. A group of mutually 
uncorrelated stochastic variables obeying Bernoulli distributions are employed to depict the phenomenon 
of multiple packet losses from different S–E channels. The stochastic uncertainties in state and output 
matrices are depicted by white multiplicative noises. The OLEs dependent on the packet loss rates are 
presented in the least mean square (LMS) sense via the orthogonal projection approach (OPA) which is a 
universal and useful tool to obtain the optimal linear estimators in LMS sense. They are solved by three 
recursive equations including one Riccati equation, one Lyapunov equation and one simple difference 
equation. The stability of the OLEs is studied. A sufficient condition is provided to guarantee the steady-
state property for time-invariant systems. Finally, a mass–spring–damper system is applied to confirm 
the performance of the derived algorithms.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Recently, NCSs have been an interesting area of research [1,2]. 
In NCSs, there often exist packet losses in data transmissions of 
S–E and C–A due to unreliable communication channels. Therefore, 
it is significant how to design an estimator or a controller based on 
the incomplete data.

For NCSs with missing measurements, many algorithms about 
the design of estimators have been reported, e.g., the LMS filter [3], 
the covariance information based least-square (LS) estimator [4], 
the robust H∞ filter [5], and the Kalman filter with intermittent 
observations [6]. For NCSs with packet losses of single side from 
S–E channel, the latest data arriving at the estimator will be ap-
plied to compensate the packet losses if the present packet is lost. 
Based on the simple compensation approach, an H2 suboptimal 
filter is presented via a linear matrix inequality (LMI) method [7], 
the LMS optimal and steady-state linear estimators are presented 
via OPA [8], and the optimal full-order estimators are also devel-
oped via completing square method [9]. For NCSs with random 
delays of both S–E and C–A channels, the robust mixed H2/H∞
control problem is reported [10]. The robust H2/H∞ filtering prob-
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lem is also studied for Takagi–Sugeno fuzzy model [11]. However, 
packet dropouts are not taken into account in [10,11]. For NCSs 
with packet losses of both S–E and C–A channels, the steady-state 
suboptimal H2 prior filter via an LMI method [12] and the opti-
mal linear filter via OPA [13] are designed, respectively. However, 
the prediction and smoothing problems are not taken into con-
sideration. Further, for NCSs with data losses, delays and missing 
measurements, the adaptive suboptimal filter [14] and optimal lin-
ear estimators [15] are proposed via Riccati equation approach, 
respectively. The aforementioned references are mainly focused on 
systems measured by single sensor. However, there usually exist 
multiple sensors in many applications such as sensor networks. 
Recently, a robust weighted H∞ filter was proposed for nonlinear 
networked systems with intermitted measurements [16]. The cen-
tralized and distributed information fusion estimators in the LMS 
sense [17] and LS sense [18,19] have been designed for systems 
with different loss rates. Moreover, the distributed fusion filter 
is proposed for systems with different delay and loss rates [20]. 
The centralized fusion estimators are also investigated for sys-
tems with multiple sensors subject to data losses, random delays 
and uncertain observations [21]. In a new recent literature [22], 
a robust weighted fusion predictor is designed for systems with 
known upper bounds of uncertain noise variances. However, the 
data losses from C–A channel are not taken into consideration in 
[16–22].
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In the references mentioned above, the coefficient matrices 
of systems considered are all deterministic. In practice, however, 
many systems are usually subject to external disturbances that 
make the uncertainties of systems [23]. For systems with stochas-
tic uncertainties of multiplicative Gaussian or non-Gaussian noises, 
the polynomial state estimators are designed [24,25]. However, 
the designed filters are nonlinear and expensive in the computa-
tional cost. For the stochastic parameter systems, optimal linear 
filter [26] and distributed fusion filter [27] are derived, respec-
tively. For stochastic uncertain systems subject to missing mea-
surements, the recursive filter with correlated noises [28] and the 
quantized recursive filter [29] are studied for nonlinear stochas-
tic system. The robust filters are designed [30] where the filtering 
gain is a stochastic matrix. The information fusion estimators for 
multi-sensor systems are also studied [31]. However, the multiple 
packet losses are not involved in the above-mentioned works. Re-
cently, optimal linear estimators for a single-sensor system with 
multiplicative noises and packet losses from S–E channel are de-
signed [32]. However, packet losses from C–A channel are not 
taken into consideration. In [33], a robust H∞ filter is also in-
vestigated for systems with sector-bounded nonlinear and network 
constraints.

Multiple sensors, stochastic uncertainties and packet losses usu-
ally exist in NCSs simultaneously. It is significant to design the 
estimators to adapt these complicated cases simultaneously. So 
far, to the best of authors’ knowledge, the optimal filtering prob-
lem for multi-sensor stochastic uncertain systems subject to mul-
tiple packet losses of both sides is not reported. In this paper, 
we consider the LMS recursive OLEs for NCSs with multiple sen-
sors, stochastic uncertainties and packet losses. White multiplica-
tive noises are introduced into the coefficient matrices to depict 
the stochastic uncertainty of systems. Packet losses randomly oc-
cur in data transmissions of both sides, and different communica-
tion channels possibly have the different packet loss rates. Using 
OPA [34], the LMS recursive OLEs are derived, which is involved in 
solving three difference equations including one Riccati, one Lya-
punov and one simple difference. The stability and steady-state 
property are analyzed. The designed filter only depends on the 
data arrival rates of both sides. In the absence of multiplicative 
noises and packet losses, the proposed algorithm is reduced to 
the standard Kalman filter. Differently from the traditional estima-
tors without stochastic uncertainties and packet losses, the covari-
ance and gain matrices are affected by the control input, the state 
mean and second-order moment. Differently from the estimators 
in [31] where missing measurements of sensors are not compen-
sated, that says that only noise is used when measurements are 
missing. However, in the current work, the latest measurement re-
ceived previously is used for compensation when a packet is lost. 
Moreover, the C–A channel is not taken into account in the system 
of [31].

The main contribution of the current work is that we in-
vestigate the more comprehensive case: system is measured by 
multiple sensors; state and output matrices are subjected to the 
stochastic uncertainties of multiplicative noises, and data trans-
missions in both S–E and C–A channels have different packet 
dropout rates. The presented OLEs only use the arrival probabil-
ities but not the sequence of received/lost indicators for every 
measurement. They can be calculated offline and have the steady-
state property, which means the reduced online computational 
cost.

The outline of the current work is organized as follows. Sec-
tion 2 gives the system model and problem statement. Section 3
derives the OLEs in the LMS sense. Section 4 is devoted to analyze 
the stability and steady-state property. Section 5 provides an ex-
ample. Section 6 draws a conclusion. Finally, we provide the proofs 
of Lemma 2 and Theorems 1 and 2 in Appendices A, B and C.

Fig. 1. NCS schematic with multiplicative noises, multiple sensors and multiple 
packet losses.

Notations. The following notational conventions will be used. 

R
n n dimensional Euclidean 

space
In n by n identity 

matrix

0 zero matrix with suitable 
dimension

diag(•) diagonal matrix

E{•} mathematical expectation 
operator

1mknl mk by nl matrix of 
all ones

Prob{•} occurrence probability of 
event “•”

� Hadamard product

Si = {1, · · · , i} a subset of natural 
number whose maximum 
element is i

⊗ Kronecker product

g the number of sensors AT transpose of 
matrix A

superscript (k) the kth sensor A−1 inverse of matrix A

⊥ orthogonality σ(•) spectrum radius of 
matrix •

2. Problem statement

The discrete stochastic linear system subject to multiplicative 
noises, multiple sensors and multiple packet losses can be formu-
lated as (see Fig. 1):
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n(k)
y represent the system state, the known control in-

put to be sent to the actuator, the control input received by the ac-
tuator, the observation outputs to be sent to the estimator, the ob-
servations received by the estimator, the process noise and the ob-
servation noises, respectively. The integer t ≥ 0 is the tth sampling 
time. Multiplicative noises ξl,t , l ∈ Sμ and λ(k)

m,t , m ∈ Sρ(k) are mutu-
ally uncorrelated scalar white noises with mean zeros and variance 
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