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We present a second order statistical analysis of the 2D Discrete Wavelet Transform (2D DWT)
coefficients. The input images are considered as wide sense bivariate random processes. We derive
closed form expressions for the wavelet coefficients’ correlation functions in all possible scenarios:

ﬁﬁﬁfs&amfmms inter-scale and inter-band, inter-scale and intra-band, intra-scale and inter-band and intra-scale and intra-
Correlation band. The particularization of the input process to the White Gaussian Noise (WGN) case is considered
Random process as well. A special attention is paid to the asymptotical analysis obtained by considering an infinite
White noise number of decomposition levels. Simulation results are also reported, confirming the theoretical results

obtained. The equations derived, and especially the inter-scale and intra-band dependency of the 2D
DWT coefficients, are useful for the design of different signal processing systems as for example image
denoising algorithms. We show how to apply our theoretical results for designing state of the art

Colored noise

denoising systems which exploit the 2D DWT.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

A great number of Wavelet Transforms (WT) as for example:
2D Discrete WT (2D DWT) [1], 2D Undecimated DWT (2D UDWT)
[2], 2D Dual Tree Complex WT (2D DTCWT) [3], etc., can be used
for image processing, because most of the image information is
concentrated in few large wavelet coefficients, property known as
sparsity of the wavelet representation.

This simplifies and accelerates the image processing algorithm
considered and is a consequence of the 2D WT decorrelation prop-
erties.

The first results about the decorrelation effect of WT were
obtained for 1D transforms. For example the covariance of coef-
ficients obtained by wavelet decomposition of random processes
can be computed recursively based on an algorithm described in
[4]. This algorithm has an interesting link to the 2D DWT, which
makes computations faster. A statistical analysis of 1D DWT was
reported in [5] and it was generalized in [6] to the wavelet pack-
ets case. Some results of statistical analysis of 2D WT can also be
found. In [7] is treated the case of 2D DWT, highlighting the inter-
scale and inter-band dependencies of wavelet coefficients, with the
aid of the mutual information concept, but closed form expressions
for the correlation functions are missing. A statistical analysis of 2D
UDWT is presented in [8] and a second order statistical analysis of
2D DTCWT is presented in [9].
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All the WT are characterized by two features: the mother
wavelets (MW) and the primary resolution (PR), or the number
of decomposition levels. The importance of their selection is high-
lighted in [10]. An appealing particularity of 2D DWT is the inter-
scale dependency of the wavelet coefficients [7]. The goal of the
present paper is a complete second order statistical analysis of the
2D DWT, establishing closed form expressions for the correlation
functions in all four possible scenarios. We also highlight the in-
fluences of the 2D DWT features on that correlation functions.

Every image denoising method has three steps: acquired sig-
nal's WT computation; filtering in wavelets domain; computa-
tion of Inverse WT (IWT). A huge number of denoising meth-
ods were developed in the last years, by associating different WT
with different filters (requested in the second step of the denois-
ing method). In the following, we present a possible classifica-
tion of denoising methods, highlighting each class with examples
based on 2D DWT. A first category of denoising methods is com-
posed by non-parametric techniques. These are denoising meth-
ods which not take into account any model of the components
of the acquired signal [11]. A second category of denoising meth-
ods is composed by parametric techniques, [12-14], which con-
sider statistical models for both components of the acquired image.
Many of these methods are based on the utilization of Maximum
A Posteriori (MAP) filters, in the second step. The construction
of a MAP filter necessitates statistical models for the noiseless
and noise components of the image to be filtered. Finally, there
are some denoising methods, which lie at the border of para-
metric and non-parametric techniques, named semi-parametric
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techniques [15-18]. These consider models only for the noise com-
ponent of the input image.

In conjunction with the expansion of new wavelet estimators,
some researchers have worked on improving the wavelet trans-
form itself. Since the early - non-redundant - 2D DWT, substan-
tial improvements have been reached in denoising by using shift-
invariant transformations, as the 2D UDWT [8,19], or quasi-shift
invariant WT with better directional selectivity, as for example
the 2D DTCWT [20-22], the steerable pyramid [23], the Dual-Tree
M-band WT (DTMBWT) [24,25] or the Hyperanalytic WT (HWT)
[12]. The new properties resulting from the use of often highly
redundant transforms (as for example the 2D UDWT) have been
obtained at the expense of the loss of orthogonality, a substantially
more intensive memory usage and a higher computational cost
than that of the 2D DWT. The latter point becomes a major con-
cern in image volume denoising and more generally in multichan-
nel image denoising, in particular when the number of channels
is large. For instance, even though the usual color image repre-
sentations require no more than 3-4 channels (RGB, HSV, YUV, or
CMYK descriptions), the computational cost is already quite large
when shift-invariant (i.e., undecimated) transforms are involved.

The structure of this paper is the following. In the second sec-
tion we study the statistical decorrelation of the 2D DWT coeffi-
cients when the image is a wide sense stationary bivariate random
process, developing the results presented in [26]. Starting from the
implementation of this transform, we highlight the four possible
scenarios: inter-scale and inter-band, inter-scale and intra-band,
intra-scale and inter-band and intra-scale and intra-band depen-
dencies. We treat the case of the 2D DWT coefficients of a bivariate
white Gaussian noise (WGN) as well. The most important theoret-
ical results obtained in the second section are verified by simu-
lation in the third section, where some experimental results are
presented. The object of the fourth section is a discussion of the
results presented in previous sections, oriented toward image de-
noising. Finally, the conclusions of the paper are presented in the
fifth section.

2. A second order statistical analysis of 2D DWT

The main advantage of 2D DWT versus other 2D WT, as for
example the 2D DTCWT, is its computational flexibility, as it in-
herits some of the classes of MW developed in the framework
of the 1D DWT, like the Daubechies, Symmlet or Coiflet families
[27]. This non-redundant transform can be implemented using the
very fast Mallat’s algorithm [1]. The drawbacks of the 2D DWT are
lack of translation invariance and poor directional selectivity. The
perfect translation invariance can be reached using the 2D UDWT.
Quasi-translation invariance can be obtained using Complex WT
(CWT) as for example the 2D DTCWT or the HWT [12]. It repre-
sents a natural generalization of the 2D DWT, which is conceived
for real images, for hyperanalytic images. The lack of translation
invariance of 2D DWT can be corrected in denoising application
[15] (see Section 4). Both CWT already mentioned have also better
directional selectivity than 2D DWT.

2.1. 2D DWT implementation

Each of the iterations of the Mallat’s algorithm implies several
operations [1]. The rows of the input image, obtained at the end
of the previous iteration, are passed through two different filters:
a low-pass filter - L with the impulse response mg and a high-
pass filter - H with the impulse response mj, resulting in two
different sub-images. The rows of the two sub-images obtained at
the output of the two filters are decimated with a factor of two.
Next, the columns of the two images obtained are filtered with mg
and my. The columns of those four sub-images are also decimated

with a factor of two. Four new sub-images, representing the result
of the current iteration (which corresponds to the current decom-
position level - or scale), are obtained. These sub-images are called
subbands. The first sub-image, obtained after two low-pass filter-
ing (LL), is named approximation sub-image (or LL subband). The
other three are named detail sub-images: LH, HL and HH. The LL
subband represents the input for the next iteration. In the follow-
ing, the coefficients of 2D DWT will be denoted by d’r‘n, where m
represents the current scale and k is the subband and it is k=1 -
for LH, k=2 - for HL, k =3 - for HH and k =4 - for LL. These
coefficients are computed using the following scalar products:

d.n, p]

=(f(r1.12). ¥} p(T1.T2)), T1ER, T2€R, (1)

where f represents the image whose 2D DWT is computed (con-
sidered as a bivariate random process) and the wavelets are real
functions and can be factorized as:
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and the two factors can be computed using the scaling function
@(t) and the MW v (7) with:
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Taking into account Eqs. (3)-(5), it can be written:

Yrnp(T1. T2) = 27"y (27" —n, 27", — p),
where y*(T1, T2) = ¥i§ 0.0(T1. T2). (6)

This is the case of the so-called separable MW. Bivariate MW
which do not satisfy Eq. (2), called non-separable, exist as well,
but are less popular, because the algorithms of the corresponding
2D DWT are more complicated and slower. They are not consid-
ered in the present paper.

2.2. The expectation of the wavelet coefficients

We begin the second order statistical analysis by computing the
statistical mean of the wavelet coefficients:
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Applying Fubini’s theorem and taking into account the fact that the
random process f is wide sense stationary, we obtain:
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