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a b s t r a c t

The objective of this study is to develop a state-space-based degradation model and
associated computational techniques to reduce failure prognostics uncertainty by fusing
on-line monitoring data. A key problem in failure prognostics for an individual system
under actual operating conditions is uncertainty management. In this study, the various
uncertainty sources in failure prognostics are analyzed, and an appropriate uncertainty
quantifying and managing mechanism is proposed, accounting for both the item-to-item
variability and the degradation process variability. The method is demonstrated on a crack
growth data set, and the results show that the proposed prognostics method has the
ability to provide a failure time prediction with less uncertainty by fusing sensor data,
which are beneficial for risk assessment and optimal maintenance decision-making.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Modern engineering systems, such as aero engines and nuclear power plants, must be run safely and economically
throughout their entire life cycles. As a result of intense financial pressure on life cycle cost (LCC), much attention is being
paid to the operational and support activities that contribute to a large portion of the life cycle total ownership cost. In this
climate, the industrial and military communities are concerned with a system's Residual Useful Life (RUL) under actual
operating conditions or in-service reliability, with the goals of maximizing equipment up-time and minimizing maintenance
and operating costs [1,2].

Prognostics usually focuses on the prediction of the failure time or the Remaining Useful Life (RUL) of a system or
component in service by analysis of data collected from sensors. In a statistical manner, the failure time distribution
(probability density of the failure time) may be estimated first, then any other reliability indexes or RUL can be obtained at
the basis of the failure time distribution. Failure can be defined as the point in time when the system degradation reaches a
predefined level. This definition makes it possible to use a degradation model to make inferences about failure time.
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However, regardless of how well we know a system, failure time is random, and the prediction of failure has some
uncertainty arising from the system's materials, environment, and loading variability. A trustworthy failure time prediction
with less uncertainty would be preferred for risk-based decision making for maintenance or replacement in operation.
Inappropriate uncertainty quantifications and representations will reduce the value of failure prognostics. Therefore, a key
issue in prognostics is to quantify and manage the uncertainties inherently associated with failure time prediction [3–5].
Here, we use the phrase “manage uncertainty” to refer to our attempt to reduce uncertainty by using sequentially available
health monitoring data [3].

The uncertainty associated with the stochastic degradation process has been addressed in the field of structure reliability
analysis [6–8]. First-/second-order reliability methods have been used to compute the failure probabilities. Additionally,
manual inspection results have been included in the model through Bayesian updating [9,10]. In practice, many system
failures can be linked to an underlying physical or chemical degradation process, such as fatigue crack growth, corrosion, or
wear [11,12]. Direct monitoring or measuring of the hidden degradation state is difficult, or even impossible in some cases.
However, with the advance of on-line condition monitoring technologies, such as the emerging Structure Health Monitoring
(SHM), other on-line monitoring data, which are statistically related to the unobservable degradation state, may be
available. Compared to manual inspections, on-line condition monitoring system may provide frequent observations of a
system by an array of sensors, allowing us to determine the current health state of the system as well as to reduce the
prognostics uncertainty by fusing the mass of on-line monitoring data.

The objective of the paper is to develop a mechanism to reduce the system failure prognostics uncertainties by fusing the
noisy on-line monitoring data available. It will focus on identifying the latent degradation process of an individual system
under actual operating conditions using sensor data, followed by statistically predicting the degradation trend as well as the
failure time. In this framework, we use a State-Space Model (SSM) to model the stochastic degradation process with
observation information. Some research on state-space-based degradation models has already been developed for residual life
prognostics [13–20]. The use of an SSM and a stochastic filtering technique for condition-based maintenance applications was
initially proposed by Wang [13,14]; then it was further explored for engine wear prediction with oil-based monitoring data
[15,16]. Myotyri et al. [17] used a discrete SSM to predict the remaining lifetime of a component using condition monitoring
measurements. Cadini et al. [18] extended Myotyri's work by adopting a continuous SSM to estimate the failure probability of a
component subject to degradation for condition-based component replacement. Both Myotyri et al. and Cadini et al. assumed
that model parameters were known and did not discuss parameter estimation issues. Orchard and Vachtsevanos proposed an
on-line particle-filtering-based framework for fault diagnosis and failure prognosis based on a nonlinear SSM [19]. Zhou et al.
[20] developed Monte Carlo-based algorithms to estimate the SSM parameters and remaining useful life. However, the
uncertainty associated with the parameters was often ignored and the mean values of the estimated parameters were adopted
for degradation prediction [19,20]. In fact, there is always some degree of uncertainty regarding the unknown parameters,
depending on the sample size. The use of a probability distribution to quantify the knowledge about these parameters would
be better than simply assuming that they are known deterministically.

The paper is organized as follows. Section 2 introduces some basic modeling and computational techniques. Section 3 is
focused on the transformation from degradation prediction to time-to-failure distribution, given a predefined failure
threshold. The proposed method is demonstrated on crack growth data in Section 4. Finally, Section 5 offers concluding
remarks.

2. State-space model for latent degradation process modeling

2.1. State-space-based degradation model

Assuming that a population of homogeneous items degrades under a regular usage profile in service, if all manufactured
items are identical and operate under exactly the same conditions and environment, then all items will fail at exactly the
same time [11]. However, in practice, due to the lack of precision in manufacturing processes (variability in the component
geometry or dimensions) and differences in the quality of material and in the initial degradation level, variability is
introduced into the failure time. We refer to such variability between each individual item as item-to-item variability, which
is introduced due to random variations across the population. Different applications and environmental conditions between
items can also contribute to item-to-item variability. Another type of variability comes from variations within the
degradation process for a given single item that may be caused by varying the operating and environmental conditions
during its life cycle. Thus, it is necessary to model the stochastic behavior within the individual degradation process over
time by a stochastic process [21]. This means that even knowing the present exact degradation state does not necessarily
ensure a certain (or deterministic) prediction in the future. We refer to this type of variability as process variability.

Ideally, a stochastic degradation model should consider all the variability mentioned above in a systematic manner, in
order to produce a confident prediction of failure time with the least possible uncertainty. In this study, we adapt the SSM to
describe the dynamics of the degradation process for in-service reliability analysis. One advantage of SSM is that
computations can be done recursively to incorporate new data. This is an advantage when data arrive sequentially, and
on-line inferences, such as on-line condition monitoring or in-service reliability assessments, are required in practice. SSM
assumes that there is an unobserved state of interest that evolves over time and that observations of the state are made at
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