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a b s t r a c t

Power flow characteristics of different forms of the Duffing oscillator, subject to harmonic
excitations, are studied in this paper to reveal the distinct power input and dissipation
behaviour arising from its nonlinearity. Power flow variables, instead of the displacement
and velocity responses, are used to examine the effects of nonlinear phenomena including
sub-/super-harmonic resonances, non-uniqueness of solutions, bifurcations and chaos.
Both analytical harmonic balance approximations and Runge–Kutta numerical integra-
tions are adopted to effectively address instantaneous/time-averaged power flows of the
system with periodic/chaotic motions without losing the essential nonlinear character-
istics. It is demonstrated that only the in-phase velocity component with the same
frequency as the excitation contributes to the time-averaged input power (TAIP). It is
shown that super-/sub-harmonic resonances may result in substantial increases in TAIP
and the nonlinearity leads to varying time-averaged power flow levels sensitive to the
initial conditions. The study reveals that bifurcations may cause large jumps in time-
averaged input power. However, for bifurcations of periodic to chaotic motions encoun-
tered in the low-frequency range, the corresponding variations in TAIP of the double-well
potential systems are small. For a chaotic response, the associated TAIP is insensitive to
the initial conditions but tends to an asymptotic value as the averaging time increases,
and thus can be used as a measure to quantify chaotic responses. The paper concludes
some inherently nonlinear power flow characteristics which differ greatly from those of
the linear systems, and provides useful information for applications.

Crown Copyright & 2013 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Vibrational power flow analysis (PFA) approach has become a widely accepted tool to investigate dynamic behaviour of
coupled systems and complex structures. Compared with individual measures such as force and displacement transmis-
sibility, vibrational power flow combines the effects of force and velocity amplitudes as well as their relative phase angle in a
single quantity, and thus can better reflect the transmission of vibration energy between various sub-systems of an
integrated structure. The PFA fundamental concepts were discussed by Goyder and White [1]. In recent years, various
approaches, such as a dynamic stiffness method [2], a receptance method [3], a mobility method [4], a wave intensity
method [5], a finite-element based energy flow modelling technique [6] and progressive approaches [7] were developed and
applied to investigate vibration control systems [8]. Instead of investigating individual structures such as coupled beam/
plate-like structures or periodic systems, Xing and Price [9] proposed a more general PFA approach based on the fundamental
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principles of continuum dynamics, in which the energy-flow vector, energy-flow potential and energy-flow lines describing
energy flow distributions were defined. Xiong et al. [10] developed a power flow mode theory to reveal the inherent power
flow behaviour of a dynamic system based on its damping distribution, from which energy flow design approaches were
proposed to achieve specific power flow patterns satisfying vibration control requirements.

Although significant advances on power flow characteristics of linear dynamical systems have been reported,
investigations on power flows of nonlinear vibrating systems are limited. However, dynamic systems in practice are
inherently nonlinear, and strong nonlinear effects have been encountered in many applications. For example, nonlinear
models for both damping and stiffness were needed for accurate dynamic analysis of hydraulic engine mounts used in the
automobile industry [11]. The damping coefficient of orifice-type dampers varies with their internal geometry, frequency of
flow oscillation and the Reynolds number [12]. There may also be significant nonlinearity in structural joints [13]. Moreover,
introducing nonlinear elements to a design may bring benefits which could not be achieved by linear systems. For instance,
it has been shown that nonlinear vibration absorbers can successfully enlarge the effective working frequency range of their
linear counterparts [14]. A nonlinear negative stiffness mechanism can be used in parallel with linear isolators to improve
the effectiveness of vibration isolators in the low-frequency range [15].

In view of these facts, there has been a growing interest in studying nonlinear dynamical systems from the perspective of
power flows in past few years. Royston and Singh [16] employed vibratory power transmission as a performance index in
the optimisation of multiple degrees-of-freedom nonlinear mounting systems, and examined automotive hydraulic engine
mounts by investigating vibratory power flows from an excited rigid body through a nonlinear path into a resonant receiver
[17]. Xiong et al. [18] studied a nonlinear coupling system consisting of a machine, a generic nonlinear isolator and a flexible
beam-like ship travelling in seaway. The nonlinearity was characterised by a pth power damping term and a qth power
stiffness term, and was shown to have a significant influence on the system's power flows, especially when the excitation
frequency is close to resonant frequencies. Oscillators with essentially nonlinear stiffness may exhibit the phenomenon of
targeted energy transfer (TET), which corresponds to one-way channelling of the vibrational energy from a primary
structure to a passive nonlinear attachment [19]. Based on the time-averaged input power information associated with free
oscillations of conservative systems, a frequency-energy plot (FEP) can be used to represent nonlinear normal modes and
the frequency-energy dependence of nonlinear systems [20]. Yang et al. [15] used time-averaged power flow quantities
instead of traditional force transmissibility to assess vibration isolation performance and attempted to quantify the
nonlinear responses of the Duffing oscillator by power flow analysis [21].

Previous research has clearly shown that a better understanding of power flow patterns in nonlinear dynamical system
can bring valuable benefits for science and engineering. However, due to a lack of power flow theory and effective modelling
and simulation methods to deal with systems involving complex nonlinear phenomena, the influences of nonlinearity on
system power flows remain unclear. Fundamental studies are still needed to reveal the basic principles governing vibration
power generation, dissipation and transmission in nonlinear dynamical systems.

In this paper, the power flow behaviour of a typical nonlinear system, the Duffing oscillator, is investigated as an attempt
to address the above problem. This system has been extensively studied with focus on its displacement/velocity responses
characteristics [22–24]. Nevertheless, new information can still be obtained by examining it from another perspective of
vibrational power flows. Such examination is necessary considering that the influence of the stiffness nonlinearity on power
flows has not been clarified and also the findings may provide promising applications to vibration control and energy
harvesting. Emphasis of the present study will be placed on revealing the associated power flow behaviour of the system
when it exhibits complex nonlinear phenomena, such as sub-/super harmonic resonances, bifurcations and chaotic motions.
Following the derivations power flow formulations, the solution methods used in the paper are briefly described. The
harmonic balance method is used for analytical approximations of the power flow variables of the system undergoing
periodic motions. Numerical simulations are conducted to investigate the instantaneous power flows, to verify the analytical
approximations and to examine the effects of chaotic motion on system power flows. Conclusions and some suggestions for
applications are provided at the end of the paper.

2. Power flow formulations and solution approaches

2.1. Power flow formulations

The Duffing oscillator is governed by the equation

€xþ2ξ_xþαxþβx3 ¼ f cos ωt; (1)

in which the restoring force is characterised by a linear term αx and a cubic nonlinear term βx3. It may be referred to as a
softening stiffness system (Case I) when α40; βo0; a hardening stiffness system (Case II) when α40; β40; or a double-
well potential system (Case III) when αo0; β40. A system with αo0; βo0 has non-positive stiffness, thus it is unstable
and will not be investigated in this paper.

Multiplying by the velocity _x on both sides of Eq. (1), we derive the power flow balance equation of the system in the
form:

_Kþ _Uþpd ¼ pin; (2)
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