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a b s t r a c t

A nonlinear method based on anisotropic diffusion notion is proposed in this paper to remove noise from
noisy signals modulated with multiple carrier signals by preserving carrier signals as well as dis-
continuities present in the original noiseless signals. Gaussian and correlated noise contaminating signals
with up to four carriers are considered here. Our algorithm proposed here is implemented with both
explicit and semi-implicit discretization schemes. Experiments presented here demonstrate promising
results indicating a better performance for our nonlinear noise removal method in comparison with the
state-of- art in the literature.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The significance of the orthogonal frequency-division multi-
plexing (OFDM) over single-carrier modulation techniques is that
OFDM can cope with severe channel conditions such as high fre-
quency attenuation in a long wire, narrowband interference and
frequency selective fading because of multipath. In the current
state-of-the art, the effect of additive noise such as white Gaussian
noise (AWGN) and correlated noise is considered to evaluate some
characteristics of the system such as its bit error rate (BER) per-
formance (see e.g. [1] and [2]). No concrete work in the literature
exists for noise removal from noisy signals with multiple carriers by
preserving some key features of the original noiseless signals such
as carrier signals and discontinuities separating the consecutive
bits. In this paper, we present a nonlinear filter based on the notion
of anisotropic diffusion to remove noise from noisy signals and
preserve key features of the original noiseless signals such as carrier
signals and discontinuities. The notion of anisotropic diffusion as a
nonlinear filter to remove the noise and preserve discontinuities in
images is introduced by Perona and Malik in [3]. Such a nonlinear
filter is generalized for 3D volumetric MRI images in [4] and 2D
color images in [5]. A robust algorithm to estimate a piecewise
smooth image from the noisy image is developed by Black et al. in
[6]. Tschumperie [7] proposes a fast anisotropic smoothing algo-
rithm based on curvature-preserving partial differential equations

(PDE) for the noise removal of multi-valued images. A nonlinear
band pass filtering algorithm based on anisotropic diffusion for
Binary Phase-Shift Keying (BPSK) signals is proposed by Mahmoodi
[8]. This algorithm however can be applied to only complex signals
and therefore requires calculating the imaginary part of a real va-
lued signal before the filtering process starts. A nonlinear band pass
filtering algorithm based on anisotropic diffusion for real valued
signals is therefore proposed in [9] to avoid the requirement for the
construction of the imaginary part of a real valued signal. Our
contributions in this paper are as follows:

i) The anisotropic diffusion based filtering method for band pass
signals is extended for carriers with multiple frequencies. This
extension enables us to perform the noise removal for OFDM
signals by preserving discontinuities and all carrier signals.

ii) The algorithm proposed here is also implemented by em-
ploying a semi-implicit discretization scheme in contrast with
the previous works in which only explicit discretization
technique is used.

iii) Correlated and white Gaussian noise is considered to de-
monstrate the efficiency of our proposed filtering method.

There are four major differences between the work presented
in this paper and the previous works in [8] and [9]:

a) The noise removal methods in [8] and [9] are for signals with a
single carrier frequency; however the nonlinear filter presented
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here is extended for signals with multiple carrier frequencies.
As demonstrated in this paper, such an extension is not trivial. A
numerical experiment is also presented in Section 4 to demon-
strate that the noise removal technique for single frequency
signals [8] fails for signals with multiple carrier frequencies.

b) The nonlinear filters in [8] and [9] are numerically implemen-
ted by using an explicit discretization scheme; however our
system in this paper is implemented by employing a semi-
implicit discretization technique to increase the numerical
stability of our algorithm here in comparison with the algo-
rithm presented in [8] and [9].

c) The noise removal method discussed in [9] is for real valued
signals (with a single carrier frequency) and is a special case of
the noise removal algorithm for signals with the double carrier
frequencies discussed here. Thus the PDE associated with the
noise removal presented in [9] possesses real valued coeffi-
cients. However PDEs presented in this paper is more general
and have complex valued coefficients.

d) The theoretical foundation for double frequency noise removal
methods for signals free from discontinuities (linear case) is
also established in this paper. As a result, the propagator for a
PDE related to a noise removal system for signals with double
carrier frequencies is analytically derived here.

The structure of the rest of the paper is as follows. The theory is
outlined in Section 2. Section 3 deals with implementation issues.
The results are presented in Section 4 and finally conclusions are
drawn in Section 5.

2. Theory

The anisotropic diffusion equation, used as a nonlinear noise
removal method for low pass signals by Perona and Malik [3] is
written as.
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with initial and boundary conditions:

( ) = ( ) ( )u x y x, 0 2-a

( ) = ( ) ( )u t y0, 0 2-b

( ) = ( ) ( )u L t y L, 2-c

where × → →+⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦u L R R y L R: 0 , : 0 , (L is the length of sig-
nal) and ≥K 0 are the smoothed low pass signal at the iteration
(virtual time) t, the original noisy signal and a function of x re-
spectively. The aforementioned partial differential equation is ex-
tended by Mahmoodi [8] for the noise removal of band pass sig-
nals with a single carrier with a constant frequency ω1 as follows:
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with initial and boundary conditions:

( ) = ( ) ( )u x y x, 0 4-a

( ) = ( ) ( )u t y0, 0 4-b

( ) = ( ) ( )u L t y L, 4-c

where × →+⎡⎣ ⎤⎦u L R R: 0 , →⎡⎣ ⎤⎦y L R: 0 and ≥K 01 are the
smoothed signal, the noisy signal, and a function of x respectively
and also = −j 1 . Boundary conditions (4-b) and (4-c) are rea-
sonable, because we have no information about the signal at lo-
cations <x 0 or >x L. Therefore the values of the smoothed signal
at =x 0 and =x L should remain unchanged. The best guess for
the fixed values in these locations is the values of the noisy signal
at =x 0 and =x L. Anisotropic diffusion Eq. (3) with initial and
boundary conditions (4) provides a method to smooth band pass
signals with a single carrier with frequency ω1.

2.1. Noise removal for signals with two carrier frequencies

In this subsection, we propose a higher order anisotropic diffu-
sion equation for the noise removal of noisy signals with two carrier
frequencies. Let us assume that the anisotropic diffusion associated
with noisy signals with carrier frequency ω1 is given by Eqs. (3) and
(4) and the anisotropic diffusion equation associated with band bass
signals whose carrier frequency is ω2, can be written as:
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with initial and boundary conditions:

( ) = ( ) ( )u x y x, 0 6-a

( ) = ( ) ( )u t y0, 0 6-b

( ) = ( ) ( )u L t y L, 6-c

To smooth a band pass signal with two carrier frequencies ω1

and ω2 such as an OFDM signal, (Eqs. (3) and 5) should be com-
bined. It is noted that any linear combination (i.e. weighted sum-
mation/subtraction) of these equations would not be able to
smooth a band pass signal with two carrier frequencies. In this
paper, we therefore propose the following equation to smooth a
band pass signal with carrier frequencies ω1 and ω2:
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with initial conditions:

( ) = ( ) ( )u x y x, 0 8-a
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and boundary conditions:

( ) = ( ) ( )u t y0, 0 9-a

( ) = ( ) ( )u L t y L, 9-b

The rationale behind the idea proposed here as Eq. (7) for
signals with double carrier frequencies is explained in Appendix A.

PDE (7) can also be written as:
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Theorem 1. The propagator of PDE (10) is given by Eq. (11) for a
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