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a b s t r a c t

In this paper, a new method for the estimation of the parameters of multidimensional (R-D) harmonic
and damped complex signals in noise is presented. The problem is formulated as R simultaneous sparse
approximations of multiple 1-D signals. To get a method able to handle large size signals while main-
taining a sufficient resolution, a multigrid dictionary refinement technique is associated to the si-
multaneous sparse approximation. The refinement procedure is proved to converge in the single R-D
mode case. Then, for the general multiple modes case, the signal tensor model is decomposed in order to
handle each mode separately in an iterative scheme. The proposed method does not require an asso-
ciation step since the estimated modes are automatically “paired”. We also derive the Cramér–Rao lower
bounds of the parameters of modal R-D signals. The expressions are given in compact form in the single
tone case. Finally, numerical simulations are conducted to demonstrate the effectiveness of the proposed
method.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The problem of estimating the parameters of sinusoidal sig-
nals from noisy measurements is an important topic in signal
processing and several parametric and nonparameteric ap-
proaches have been developed for one-dimensional (1-D) signals
[1]. Recently, this problem has received a renewed interest
thanks to the emergence of multidimensional (R-D) applications.
Indeed, parameter estimation from R-D signals is required in
numerous applications in signal processing and communications
such as nuclear magnetic resonance (NMR) spectroscopy, wire-
less communication channel estimation [2] and MIMO radar
imaging [3]. In all these applications, signals are assumed to be a
superposition of R-D sinusoids or, more generally, of ex-
ponentially decaying R-D complex exponentials (modal signals).
As for the 1-D case, the crucial step is the estimation of the R-D
modes (including frequencies and damping factors) because they
are nonlinear functions of the data. In this paper, we consider the

single snapshot R-D signal model described in [4].
In order to achieve high resolution estimates, parametric ap-

proaches are often preferred to nonparametric ones. Several
parametric R-D methods ( ≥R 2) have been proposed. They include
linear prediction-based methods such as 2-D TLS-Prony [5], and
subspace approaches such as matrix enhancement and matrix
pencil (MEMP) [6], 2-D ESPRIT [7], multidimensional folding
(MDF) [8], improved multidimensional folding (IMDF) [9,10],
Tensor-ESPRIT [11], principal-singular-vector utilization for modal
analysis (PUMA) [12,13] and the methods proposed in [14,15]. All
these methods perform at various degrees but it is generally ad-
mitted that they yield accurate estimates at high SNR scenarios
and/or when the frequencies are well separated. This is obtained at
the expense of computational effort. In [12], tensor PUMA was
proposed as an accurate and computationally efficient multi-
dimensional harmonic retrieval method, which attains the Cra-
mér–Rao lower bound (CRLB) and does not require to build large
size matrix or tensor. However its performance degrades rapidly
with the increase of the number of components in the R-D signal.

Recently, methods based on sparse approximations have been
proposed to address the harmonic or modal retrieval problem [16–
23]. For time-data spectral estimation, the dictionary is formed
from a set of (normalized) complex exponentials potentially em-
bedded in the data, which allows one to easily include some prior
knowledge about the position of some known modes. More gen-
erally, the usual choice is a uniform spectral grid obtained by
sampling the frequency and damping factor lines. Clearly, a fine
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grid is required to get a good resolution but, on the other hand, it
will result in a huge dictionary [16]. This complexity is further
increased in the case of R-D signals in which we are confronted
with R2 -D grids. In order to reduce the computational burden, a
multigrid scheme for sparse approximation was proposed in [20]
to iteratively refine the dictionary starting from a coarse one. At
each iteration, a sparse approximation is performed and then new
grid points (called “atoms”) are inserted in the vicinity of active
ones leading to a multiresolution-like scheme. This algorithm,
which refines jointly R2-D grids, is efficient but has mainly two
drawbacks: (1) it does not have convergence guarantees, (2) the
dictionary becomes intractable for large signals when ≥R 2. Re-
cently, several studies have also focused on gridless sparse re-
covery methods based on continuous dictionaries [24,25]. How-
ever, the proposed algorithms demand a large computational
burden even for 1-D signals.

The goal of the present paper is to propose a fast multi-
dimensional modal estimation technique able to handle large
signals and yielding a good estimation accuracy.

1. First, the proposed approach, as for some parametric methods
for modal retrieval, is based on the idea of estimating the
parameters independently along each dimension = …r R1, , . It
will be shown that the simultaneous sparse approximation
concept [26,21] is well-suited for R-D modal retrieval ( ≥R 2).

2. The second contribution consists in the proposition of a new
multigrid scheme which amounts to consider a two-step re-
finement of 1-D grids, the first step for frequencies and the
second one for damping factors. One advantage of this proce-
dure is that it reduces the computational time. The convergence
of the proposed multigrid strategy is analyzed in the single tone
case ( = )F 1 , and convergence conditions are expressed in terms
of atom positions in the initial dictionaries.

3. The extension of this result to the multiple tones case ( >F 1) is
not trivial because, not only it depends on the selected sparse
approximation algorithm, but also on the coherence of the
dictionary [26]. Indeed, due to the multigrid strategy, the
columns of the refined dictionary are increasingly correlated,
which may prevent convergence even in the noiseless case.
Consequently, for >F 1, we exploit an alternative representation
of the data model enabling the extraction of the R-D signal
tones separately. Therefore, the third contribution of this paper
is the derivation of a new algorithm for estimating parameters
of R-D damped signals in which the results of the previous
contribution apply. The effectiveness of the new algorithm for
multiple R-D tones is also analyzed. One very interesting by-
product of this approach is that the pairing of R-D parameters is
achieved for free, without any further association stage.

The usual way to assess the performances of an estimation
method is to compare the variance of the estimates to the CRLB.
In [6] Hua derived the CRLB for 2-D frequencies, i.e., undamped
2-D exponentials; no damped signals are considered. Closed-
form expressions of the CRLB for the general undamped R-D case
are derived in [27]. CRLB for 2-D damped signals are derived in
[28]. Therefore, to the best of our knowledge, no compact ex-
pressions of the CRLB's are available for the general R-D damped
model. Thus, another contribution of the paper is the derivation
of the CRLB's for the frequency, damping factor, amplitude and
phase of this model.

The remainder of this paper is organized as follows. In Sec-
tion 2, we introduce notation and present the R-D modal re-
trieval problem. In Section 3, we formulate the R-D modal esti-
mation problem as R simultaneous sparse estimation problems,
show how to construct a modal dictionary on a uniform grid and
then describe the new fast multigrid strategy. In Section 4, we

give sufficient conditions for convergence of the multigrid dic-
tionary refinement in the case of single tone R-D signals. In light
of these new results, we propose in Section 5 a new efficient
algorithm for multiple tones R-D signals. In Section 6, we derive
the expressions of the CRLB's for the parameters of R-D damped
exponentials in Gaussian white noise. We then give the CRLB in
the cases of single damped and undamped R-D cisoids. The ef-
fectiveness of the proposed method is demonstrated using si-
mulation signals in Section 7. Finally, conclusions are drawn in
Section 8.

2. Notation and problem statement

2.1. Notation

Scalars are denoted as lower-case letters α( )a b, , , column vec-
tors as lower-case bold-face letters ( )a b, , matrices as bold-face
capitals ( )A B, , and tensors as calligraphic bold-face letters ( ), .
Notations (·) (·),T H and (·)† stand for the transpose, the Hermitian
transpose and the pseudo-inverse, respectively. The symbols “⊙”

and “⊠” will denote the Khatri–Rao product (column-wise Kro-
necker) and the Kronecker product, respectively. Both words
“mode” and “tone” are used to refer to a component of the multi-
dimensional signal. The tensor operations used here are consistent
with [29]:

� the outer product of two tensors ∈ ×⋯×M MR1 and
∈ ×⋯×K KN1 is given by:

= ⊗ ∈
( … … ) = ( … ) ( … ) ( )

×⋯× × ×⋯×

c m m k k a m m b k k

,

, , , , , , , , , 1

M M K K

R N R N1 1 1 1

R N1 1

� the contraction product acting on the r-th index of a tensor
∈ ×⋯×M MR1 and the second index of a matrix ∈ ×U K Mr is:

∑
( )

= • ∈

( … … ) = ( … ) ( )

×⋯× × × ×⋯×

− +
=

− +

2
b m m m k m m a m m m u k m

U ,

, , , , , , , , , , ,

r

M M K M M

r r r R
m

M

R r r1 2 1 1
1

1 2

r r R

r

r

1 1 1

� the matrix ∈( )
×( ⋯ ⋯ )− +A r

M M M M Mr r r R1 1 1 represents the unfolding
(dimension-r matricization) of the tensor and corresponds to
the arrangement of the dimension-r fibers of in the columns
of the resulting matrix.

� ∥ ∥ denotes the Frobenius norm for tensors.
� The concatenation of two tensors ∈ ×⋯× × × ×⋯×− +M M K M M

1
r r R1 1 1 1

and ∈ ×⋯× × × ×⋯×− +M M K M M
2

r r R1 1 2 1 along the rth dimension is
denoted by ⊔r1 2 and obtained by stacking 1 and 2 along
the rth dimension.

Finally, throughout this paper, the tilde symbol (∼) denotes a noisy
signal; e.g. ˜ (·) = (·) + (·)y y e .

2.2. Problem formulation

An R-D modal signal is modeled as the superposition of F
multidimensional damped complex sinusoids:

∑ ∏˜( … ) = + ( … )
( )= =

−y m m c a e m m, , , ,
3

R
f

F

f
r

R

f r
m

R1
1 1

,
1

1
r

where = …m M1, ,r r for = …r R1, , . Mr denotes the sample sup-
port of the r-th dimension, α ω= ( + ) ∈ a jexpf r f r f r, , , is the f-th

mode in the r-th dimension, α{ } = =f r f r
F R

, 1, 1
, , α ∈ −f r, , are the damping

factors, ω πν{ = } = =2f r f r f r
F R

, , 1, 1
, are the angular frequencies, and

λ ϕ= ( )c jexpf f f is the complex amplitude of the f-th mode where
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