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a b s t r a c t

Graph signal processing deals with the processing of signals defined on irregular domains and is an
emerging area of research. Graph filter banks allow the wavelet transform to be extended for processing
graph signals. Sakiyama and Tanaka (2015) [22] recently proposed a technique to convert linear-phase
biorthogonal filter banks for regular domain signals to biorthogonal graph filter banks. Perfect re-
construction is preserved using the technique but the resulting spectral filter functions are transcen-
dental and not polynomial. Polynomial function filters are desired for the localization property and
implementation efficiency. In this work we present alternative techniques to perform the conversion.
Perfect reconstruction is preserved with the proposed techniques and the resulting spectral filters are
polynomial functions.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

There are many applications, e.g. social, biological and sensor
networks, where the data is defined on an irregular domain. Ir-
regular domains are best modelled using graph theory techniques
and this has spawned great interest among signal processing re-
searchers to develop graph signal processing (GSP) techniques.
Excellent recent reviews of this fast emerging area can be found in
[1,2]. Some applications where the signal is naturally defined in
the regular-domain, e.g. images, can also benefit from GSP tech-
niques [1]. The extension of techniques from regular-domain sig-
nal processing to processing graph signals are non-trivial and
sometime non-unique [1,2]. The notion of frequency and fre-
quency domain is perhaps one of the most important and useful
concepts in regular-domain signal processing. An extension of this
notion that is based on the adjacency matrix is presented in [3,2].
Spectral graph theory [4], which is based on the Laplacian matrix,
provides a natural extension of the notion of frequency and fre-
quency domain for graph that are undirected [5,1].

The wavelet transform is without doubt one of the most
powerful tools for processing regular-domain signals in many
applications [6–9]. Several researchers have proposed extending
the wavelet transform for graph signals [10–17,5]. The graph wa-
velet designs can broadly be classified into either the vertex

domain designs (analogous to the spatial domain) or the spectral
domain designs (analogous to the frequency domain). The spectral
domain design relies on the use of the graph Laplacian to give a
spectral representation that is similar to the Fourier transform for
regular-domain signals. The wavelet transform that is based on the
two-channel multirate filter bank is one of the most popular type
of regular-domain transform [18]. Most of the graph transforms
proposed however are not based on the critically sampled filter
bank. Using spectral graph theory, the two-channel critically
sampled filter bank was extended by Narang and Ortega for pro-
cessing signals in the graph domain [15,16]. The key to achieving
critical sampling is the introduction of the downsampling/up-
sampling operation on bipartite graphs. Any arbitrary graph can be
decomposed into a series of bipartite graphs. By sequential ap-
plication to this series of bipartite graphs, the basic two channel
bipartite filter bank can be used to implement a wavelet transform
for signals defined over any arbitrary graph. This is similar to the
notion of separable filtering for multidimensional regular-domain
signals. The design in [15] is orthogonal and the design in [16] is
biorthogonal. For achieving localization and efficient im-
plementation, the spectral filter must be a finite polynomial of the
spectral variable (usually denoted by λ). Perfect reconstruction can
be achieved with polynomial spectral filters for the biorthogonal
case but cannot be achieved for the orthogonal case. The critically
sampled graph wavelet transform has been applied to the non-
linear approximation of signals in [15,16]. It was shown in [15,16]
that the graph wavelets gave better results than regular-domain
wavelets for images as the edge information was better captured
with the former. The biorthogonal graph wavelet transform has

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/sigpro

Signal Processing

http://dx.doi.org/10.1016/j.sigpro.2016.07.003
0165-1684/& 2016 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: d.tay@latrobe.edu.au (D.B.H. Tay),

ytnk@cc.tuat.ac.jp (Y. Tanaka), sakiyama@msp-lab.org (A. Sakiyama).

Signal Processing 131 (2017) 66–72

www.sciencedirect.com/science/journal/01651684
www.elsevier.com/locate/sigpro
http://dx.doi.org/10.1016/j.sigpro.2016.07.003
http://dx.doi.org/10.1016/j.sigpro.2016.07.003
http://dx.doi.org/10.1016/j.sigpro.2016.07.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2016.07.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2016.07.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2016.07.003&domain=pdf
mailto:d.tay@latrobe.edu.au
mailto:ytnk@cc.tuat.ac.jp
mailto:sakiyama@msp-lab.org
http://dx.doi.org/10.1016/j.sigpro.2016.07.003


also recently been applied to the compression of human body
sequences [19,20] with significant performance improvement over
direct encoding using the state-of-the-art video encoder HEVC
(High Efficiency Video Coder).

The design of regular-domain filter banks (RDFB) is a mature
area and there is a plethora of design techniques and filter coef-
ficients in the research literature. For example the Matlab wavelet
toolbox has functions to generate the Cohen–Daubechies–Feaveau
(CDF) wavelet filter coefficients [21]. The recent work in [22] de-
veloped techniques for converting real-valued critically sampled
RDFB to graph filter banks (GFB). This is an alternative to the direct
design of GFB [15,16,23–25]. The techniques in [22] involves a
direct linear mapping of the frequency variable (usually denoted
byω) of the RDFB to the spectral variable (usually denoted by λ) of
the GFB. The resulting spectral filters are transcendental (trigo-
nometric) functions and are not polynomials. For localization and
efficient implementation a polynomial approximation to the
transcendental function is used and perfect reconstruction (PR)
can only be approximated. In this paper a different approach is
proposed to convert RDFB to GFB. The resulting spectral filters are
polynomial functions and exact PR is preserved in the GFB.

An overview of the paper is as follows. A review of the fun-
damentals of graph signal processing is presented in Section 2.
Section 3 presents the new conversion techniques and proves
certain associated results. The conversion relies on the construc-
tion of certain functions and Section 4 discusses the choices for
these functions. Design examples are presented in Section 5.
Conclusions are given in Section 6.

2. Preliminaries

A brief review of graph theory, graph signal processing and
biorthogonal graph filter banks is presented here. Results are
stated without proofs. More details can be found in [5,15,1,16].

2.1. Spectral graph theory

A graph G is a mathematical object consisting of vertices and
edges. A graph can be directed or undirected but only the latter
will be considered in this paper. The set of vertices V and the set of
edges E defines the graph ( )=G V E, . The number of vertices is
denoted as = | |N V and the vertices are labelled as … N1, , . An edge

( )∈ ∈e i j E, connects the two vertices i and j. The adjacency ma-
trix A is the ×N N symmetric matrix whose element

( )= …a i j N, 1, ,i j, is positive real and gives the weight of the edge
connecting vertices i and j. If there is no edge connecting vertices i
and j then =a 0i j, . Only graphs with no self loops ( = )a 0i i, are
considered in this paper. An example of a graph with N¼7 vertices
and 6 edges is shown in Fig. 1. The vertex i degree is ≡ ∑d ai j i j,

and the diagonal matrix D is ≡ ( )dD diag i . The unnormalized
(combinatorial) graph Laplacian matrix is defined as ≡ −L D A .
The normalized graph Laplacian, with respect to D, is defined as
[5,15,1,16]

≡ = −− − − −
D LD I D AD

1/2 1/2 1/2 1/2

where I is the identity matrix. Only the normalized Laplacian
will be considered in this paper. Since is a real symmetric ma-
trix, it can be decomposed as [5,15,1,16]

∑ λ Λ= =
=

u u U U
i

N

i i i
T T

1

where λΛ = ( )diag i and ≡ [ | |⋯| ]U u u uN1 2 , with λi being the eigen-
value of and ui being the corresponding eigenvector. Now

=UU IT (orthogonal matrix), so the eigenvectors ⋯u u, , N1 form an

orthonormal set. The set of eigenvalues σ λ λ λ( ) ≡ { ≤ ⋯ ≤ }G N1 2 is
the spectrum of graph G. The eigenvalues are bounded in the in-
terval ⎡⎣ ⎤⎦0, 2 and correspond to the graph natural oscillation
frequencies.

2.2. Graph signal filtering

A signal over a graph G is a function that maps each vertex i to a
numerical value f(i). The graph signal can be represented as the
vector = ( )⋯ ( )⎡⎣ ⎤⎦f f Nf 1 T . The graph Fourier transform is defined as
[5,15,1,16]

∑λ^ ( ) ≡ ( ) ( ) =
=

f f n u n f ul
n

N

l
T

l
1

where ≡ [ ( ) ⋯ ( )]u u Nu 1l l l
T (for = ⋯l N1, , ) are the Laplacian ei-

genvectors. The equation can be compactly written as ^ =f U fT

where λ λ^ = [^ ( )⋯^ ( )]f ff N
T

1 is the vector of the spectral component
at the graph frequencies. The inverse graph Fourier transform is

therefore = ^f Uf or in scalar form λ( ) = ∑ ^ ( ) ( )=f n f u nl
N

l l1 . Filtering

in the spectral domain is defined as λ λ λ^ ( ) = ( )^ ( )f h fout l l l where λ( )h
is the spectral filter in the continuous spectral variable λ. Taking
the inverse transform of λ^ ( )fout l gives the output in the vertex

domain as λ λ( ) = ∑ ^ ( ) ( ) ( )=f n f h u nout l
N

l l l1 . In vector/matrix form

=f H fout , where λ λ= ( ) ≡ ∑ ( ) = { ( )}=h h hH u u U Udiagi
N

i i i
T

i
T

1 can
be considered as a transformation matrix. Graph filtering therefore
in general requires the knowledge of the eigenvalues/eigenvectors
of the underlying graph G. An eigendecomposition of a large graph
(with large N) is however computationally expensive. However
when the spectral filter is given by λ λ( ) = ∑ =h bk

K
k

k
0 (K degree

polynomial with coefficients bk), it can be readily shown (using the
identity λ= { }U Udiagk

i
k T ) that the transformation matrix is gi-

ven by = ∑ = bH k
K

k
k

0 . Explicit knowledge of the eigenvalues/ei-
genvectors is therefore not required for filtering. Only powers of
the Laplacian is required which is much less expensive computa-
tionally. Another important property of polynomial filters is loca-
lization. A K-hop (K integer) local neighborhood for vertex i, de-
noted by ( )i K, , is defined as the set of (other) vertices that are
connected to vertex i by no more than K edges. For example in
Fig. 1, ( ) = { }3, 1 1, 2, 6 and ( ) = { }6, 2 1, 2, 3, 4, 5, 7 . A filter

( )h is K-hop localized if the output fout(i) is determined only by
input values f (j) in ( )i K, . It can be shown that a degree K

1 2

3
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5

6

7
Fig. 1. An example of a graph with 7 vertices and 6 edges.
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