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a b s t r a c t

Variable selection for high-dimensional data problems, including both regression and classification, has
been a subject of intense research activities in recent years. Many promising solutions have been pro-
posed. However, less attention has been given to the case when some of the data are missing. This paper
proposes a general approach to high-dimensional variable selection with the presence of missing data
when the missing fraction can be relatively large (e.g., 50%). Both regression and classification are con-
sidered. The proposed approach iterates between two major steps: the first step uses matrix completion
to impute the missing data while the second step applies adaptive lasso to the imputed data to select the
significant variables. Methods are provided for choosing all the involved tuning parameters. As fast al-
gorithms and software are widely available for matrix completion and adaptive lasso, the proposed
approach is fast and straightforward to implement. Results from numerical experiments and applications
to two real data sets are presented to demonstrate the efficiency and effectiveness of the approach.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

High-dimensional data are encountered frequently nowadays
in diverse fields of study and applications including biomedical
research, finance, machine learning and signal processing. With
rapid development of technology and increasing complexity of the
contemporary scientific problems, both the number of instances
and variables have been growing unprecedentedly. In particular,
variable selection in the high-dimensional setting has drawn great
attention and become a fertile field of research in recent years.
Many methods have been proposed to solve this problem for both
regression and classification; e.g., see [1,3,4,8,13,24,28,29].

In this paper we are interested in high-dimensional variable
selection with the presence of missing data while the missing
fraction can be fairly large (e.g., 50%). Although missing data occur
frequently in various signal processing and statistical applications
[25–27,30], there is not much work considering this problem in
the existing literature, especially for classification. Some notable
exceptions include [24] where the expectation–maximization (EM)
algorithm is applied to estimate the inverse covariance matrix in
sparse linear regression with missing data. However, like many
other EM based solutions for complex problems, this EM-algo-
rithm is computationally intensive and the missing fraction is
usually relatively small. In [16] an algorithm is developed based on

projected gradient descent for the cases of noisy and/or missing
data in high-dimensional sparse linear regression, but again the
missing fraction they study is relatively small.

In order to handle both high-dimensionality and high missing
fraction, in this paper a new procedure that combines matrix
completion techniques and adaptive lasso is developed for solving
this variable selection problem. The proposed procedure is
straightforward to implement, computationally fast, and capable
of producing promising empirical results.

The rest of our paper is organized as follows. Section 2 provides
a detailed description of the problem of interest, and presents the
proposed method for variable selection in high-dimensional re-
gression with missing data. The case for classification using logistic
regression is presented in Section 3. The empirical performances
of the proposed methods are evaluated by simulation experiments
and a real data application in Sections 4 and 5 respectively. Lastly,
concluding remarks are given in Section 6.

2. Variable selection for high-dimensional regression with
missing data

We first illustrate our methodology with high-dimensional
regression. Suppose observed are p predictors, denoted as

…x x, , p1 . Let = ( … )y yy , , n1 be the response vector of n observa-
tions, X be the corresponding ×n p design matrix and
β β β= ( … ), , p

T
0 be the regression coefficients. We allow the

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/sigpro

Signal Processing

http://dx.doi.org/10.1016/j.sigpro.2016.07.014
0165-1684/& 2016 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: qigao@ucdavis.edu (Q. Gao), tcmlee@ucdavis.edu (T.C.M. Lee).

Signal Processing 131 (2017) 1–7

www.sciencedirect.com/science/journal/01651684
www.elsevier.com/locate/sigpro
http://dx.doi.org/10.1016/j.sigpro.2016.07.014
http://dx.doi.org/10.1016/j.sigpro.2016.07.014
http://dx.doi.org/10.1016/j.sigpro.2016.07.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2016.07.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2016.07.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2016.07.014&domain=pdf
mailto:qigao@ucdavis.edu
mailto:tcmlee@ucdavis.edu
http://dx.doi.org/10.1016/j.sigpro.2016.07.014


possibility of ⪢p n, the so-called “large p small n” situation. With a
linear regression model we have β ϵ= +y X , where ϵ σ∼ ( )N I0, n

2

is the vector of random errors and In represents the identity matrix
of size n. Since ⪢p n, a sparsity assumption has to be imposed; i.e.,
many components of β are exactly zero or negligibly small. Let s
denote the number of significant predictors, in practice we usually
have < ( )s O p so that the full model can be well approximated by a
much smaller submodel. With this assumption, an important
problem is to determine which predictors are significant, and to
estimate their corresponding regression coefficients.

This paper considers a more challenging and frequently en-
countered version of this problem: it allows some entries of X that
are missing completely at random. Our proposed solution to this
problem consists of two major stages:

1. Use a procedure to impute the missing entries of X; denote the
imputed X as X̂ .

2. Given y and X̂, apply a procedure to select the significant
predictors as well as estimating their coefficients.

Since we would like to allow the case when ⪢p n with a large n, the
choices of the above procedures are limited. After extensive
methodological consideration and numerical investigation, we
propose using matrix completion for the first stage and adaptive
lasso for the second. A full description of our choices is given be-
low. As to be seen, the overall method is very fast and straight-
forward to implement. We stress that in our proposal the two
stages are not executed independently, as the choice of the tuning
parameters in Stage 1 requires information from Stage 2, and vice
versa.

2.1. Missing value imputation using matrix completion

This subsection discusses our method for imputing the missing
entries of X. For clarity, we occasionally use a subscript to denote
the size of a matrix; e.g., ×Xn p.

Perhaps the most well-known approach for handling missing
data problems is the EM-algorithm and its variants. However,
these model-based methods are not practical for the present
problem as they can be computationally demanding and hard to
incorporate large missing fraction, especially under the “large p
small n” situation. Therefore, we take a different path and assume
that X has a low rank structure. That is, X can be well approxi-
mated by the product of two matrices V and G such that

≈× × ×X V Gn p n r r p with the rank r of X satisfies ⪡ ( )r n pmin , . In

practice, < ( )r n pmin , when >p n . Under this assumption,
many fast matrix completion algorithms can be applied to quickly
impute the missing entries of X; e.g., see [6,10,12,15,17–19].

In this paper we use the softImpute-ALS procedure proposed
by [10] which is a relatively new matrix completion algorithm and
has the advantage of fast computation compared with other
methods. This procedure completes large matrices efficiently by
combining two popular methodologies: nuclear-norm-regularized
matrix approximation and maximum-margin matrix factorization.
Let Ω be the index set of the non-missing entries of X; i.e.

( ){ }Ω = i j ij X, : the th entry is observedij . Also let ( )ΩP X be the
projection of the ×n p matrix which preserves the non-missing
entries of X and replaces the missing entries with 0. Similarly, Ω

⊥P
denotes the projection onto the complement of Ω. Then soft-

Impute-ALS solves the following minimization problem:

η‖ ( − )‖ + (‖ ‖ + ‖ ‖ )
( )Ω

⎧⎨⎩
⎫⎬⎭P X AB A Bminimize ,

1
T

F F F
A B,

2 2 2

where ×An r and ×Br p
T are each of rank at most ≤ ( )r n pmin , , and

∥·∥F is the Frobenius norm. Denote the minimizers as Â and B̂. The

imputed X is then obtained as ^ = ( ) + (^ ^ )Ω Ω
⊥P PX X AB

T
. In all our

numerical work we use the R package softImpute to implement
this algorithm. A rank r for X is specified and η is fixed as a small
number (0.5) so as not to over-penalize. Next we discuss the
choice of r.

Methods are available for selecting the rank r for matrix com-
pletion methods, such as the BIC criterion of [18]. However, these
methods are suboptimal for our problem as the information in y is
not utilized in the selection. In the context of multivariate re-
sponse regression models, the Rank Selection Criterion (RSC) is
introduced by [2] for selecting the rank of the coefficient matrix
estimates. Inspired by this, we propose choosing r as the mini-
mizer of the following modified RSC:

β μ( ) = ‖ − ^ ^ ‖ + ( )λr ry XRSC , 2r F,
2

where β̂λ r, is an estimate for β (to be discussed below). The
quantity μ is a tuning parameter and by theoretical consideration
the following lower bound is derived by [2]:

β βμ σ> ^ { (^) + (^) }ncol rank1/2 1/2 1/2 where σ̂ is an estimate for the
random noise standard deviation s which can be estimated by the

standard deviation of the residuals β− ^ ^
λy X r, and ncol stands for

the number of columns. We use the smallest μ that satisfies this
bound; i.e., μ σ= ^4 2. We use the RSC in [2] as a starting point to
develop a method for choosing r for the problem that we consider,
and it turns out this modified RSC possesses very good empirical
properties as shown later in numerical experiments. Now we are
ready to discuss the problem of selecting significant predictors

given an imputed X̂ .

2.2. Variable selection with adaptive lasso

As mentioned in the introduction, many methods have been
developed for simultaneous variable selection and parameter es-
timation for the high-dimensional regression problem. Virtually
any of these methods could be used here for our problem, but we
recommend using the adaptive lasso of [31] for the following
reasons. First, its theoretical properties are well studied and it has
been shown for example by [11] to perform extremely well for
high-dimensional problems and satisfy the oracle properties de-
fined by [7]. Therefore, we believe that it is a reliable option for our
high-dimensional variable selection problem. Second, fast algo-
rithms and software exist for computing its solutions; e.g., the R
package glmnet of [20]. And lastly, it can be straightforwardly
extended to generalized linear models to handle classification
problems.

The adaptive lasso estimate β̂λ r, for β is defined as

∑β β λ β^ = ‖ − ^ ‖ + ^ | |
( )β

λ
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟wy Xargmin ,

3
r F

j

p

j j,
2

1

where λ is a tuning parameter and ^ … ^w w, , p1 are pre-set weights.
We follow [31] and use ridge regression to obtain these weights;

i.e., for all j we set β^ = | ^ |w 1/j j,ridge , where β̂j,ridge is the ridge re-
gression estimate of βj.

To calculate (3), we need to choose λ, and to do so we use the
Extended Bayesian Information Criterion (EBIC) of [3]. In brief EBIC
is a modified version of BIC that is tailored to “large p small n”
problems. By taking into account the complexity of the enlarged
model space in addition to the number of the parameters, EBIC is
able to control the false discovery rate. It is also shown to be
consistent in [3] under some regularity conditions. For the current
problem, EBIC is
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