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a b s t r a c t

This paper investigates the mean square performance of the least mean square (LMS) and normalized
LMS (NLMS) algorithms with white reference inputs. Their closed-form mean square deviation (MSD)
expressions for the transient and steady-state regimes are derived. Additionally, bounds on the step-size
which guarantee mean square stability are given. It is found that the step-size bound and transient
behavior of the LMS and the steady-state MSD of the NLMS depend on the kurtosis of the input signal.
Convergence rates and steady-state MSDs of the two algorithms are then compared, which shows that
the normalized variant with a large step-size would offer faster convergence rate than the LMS scheme.
However, when small step-sizes are employed, the LMS achieves lower steady-state MSD than the NLMS
at the same convergence rate.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Adaptive filtering has attracted much research interest in both
theoretical and applied aspects for a long time [1–3]. Due to the
good performance and easy implementation, the least mean
square (LMS) and normalized LMS (NLMS) algorithms have been
widely used in various applications [4–7].

There have been numerous works [8–20] on analyzing the
performance of the LMS and NLMS algorithms for Gaussian inputs.
In [9–11], the mean and mean square behaviors of the LMS algo-
rithm for Gaussian inputs were studied with the use of the fourth-
order Gaussian moment. When the input is stationary and zero-
mean Gaussian distributed, the convergence performance of the
NLMS algorithm had been presented in [14–16], which shows that
this method exhibits improved convergence rate in the mean, but
at the expense of high steady-state error. In these analyses, the
independence assumption was used. The comprehensive study of
the independence theory results were obtained by Gardner in [17].
Assuming sufficiently small step-size conditions, the steady-state
behavior of the LMS algorithm was presented in [18], where the
independent assumption is not required. In [19–21], closed-form
expressions for the transient behaviors and the steady-state excess

mean square error of the LMS and NLMS were developed. When
all signals are bounded, new upper bound for the step-size of LMS
algorithm was proposed in [22]. In addition, their mean square
performance for cyclostationary white Gaussian input signals had
been studied in [23]. However, the characteristics of the LMS and
NLMS algorithms for non-Gaussian inputs have not been well
studied in the literature.

In this paper, we study the mean square behavior of the LMS
and NLMS algorithms in the context of adaptive noise canceling
[24,25] for different white reference input distributions. It points
out the effect of the kurtosis of the reference input signal on their
convergence performance. Specifically, the analysis is done in the
context of tracking a first-order Markov plant, which is a random
walk to model a non-stationary signal for the optimum weights
[6,19,23]. Mathematical models are derived for the mean square
behavior of the LMS and NLMS. Their step-size bounds and steady-
state behaviors are also produced. Simulation results are per-
formed to validate our theoretical development.

2. System model

Consider the adaptive noise cancellation application shown in
Fig. 1, where x(n) is the reference input and s(n) is the desired
signal. The primary input d(n) to the canceller is ( ) = ( ) ( ) + ( )d n n n s nw xT ,
where ( ) = [ ( ) ( − ) … ( − + )]n x n x n x n Lx , 1 , , 1 T , ( ) = [ ( ) ( ) … ( )]n w n w n w nw , , , L

T1 2 ,
and (·)T is the transpose of (·). The canceller output is

( ) = ( ) − ^ ( ) ( )e n d n n nw x
T

, where ^ ( ) = [ ^ ( ) ^ ( ) … ^ ( )]n w n w n w nw , , , L
T

1 2
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contains the adaptive filter tap weights at time n. The unknown
coefficient vector in the context of a non-stationary system is a
first-order Markov model ( + ) = ( ) + ( )n n nw w q1 , where ( )nq
denotes the random perturbation.

The MSD is ( ) = ( {( ( ) − ^ ( ))( ( ) − ^ ( )) })n E n n n nw w w wMSD Tr T ,
where (·)Tr is the trace of a matrix and {·}E is the mathematical
expectation of a random variable.

To keep the calculations mathematically tractable, the follow-
ing assumptions are adopted for the LMS and NLMS algorithms.

Assumption I. {x(n)} is an i i d. . . stationary sequence with even
probability density function, finite variance sx

2, finite { ( )}E x n4 ,
and finite { ( ( ) ( ))}E n nx x1/ T . The kurtosis κ of x(n) is κ = { ( )}

[ { ( )}]
E x n

E x n

4

2 2 . In
addition, the existence of { ( )}E x n4 and { ( ( ) ( ))}E n nx x1/ T is needed
for the LMS and NLMS algorithms, respectively. This is because the
non-existence of { ( )}E x n4 and { ( ( ) ( ))}E n nx x1/ T will lead to di-
vergence of the LMS and NLMS in the mean square sense [26].

Assumption II. { ( )}s n is i.i.d. with zero-mean and finite variance
ss

2, and is independent of ( )nx for all n.

Assumption III. The random perturbation vector ( )nq is statio-
narily i.i.d. zero-mean vectors with σ{ ( ) ( )} =E n nq q IT

q
2 , and is

mutually independent of ( )nx and ( )s n .

Assumption IV. ^ ( )nw is independent of ( )nx , which is valid when
the step-size is sufficiently small [19–21].

3. Mean square analysis of LMS for white reference inputs

The LMS weight update recursion is

μ^ ( + ) = ^ ( ) + ( ) ( ) ( )n n n e nw w x1 1

where μ is the step-size. Let ( ) = ( ) − ^ ( )n n nv w w denote the weight
error vector, the canceller output is

( ) = ( ) + ( ) ( ) ( )e n s n n nv x 2T

and the weight error vector of the LMS can be expressed as

( )μ( + ) = ( ) − ( ) ( ) + ( ) ( ) + ( ) ( )n n n s n n n nv v x x v q1 3T

Using Assumptions II–IV and post-multiplying (3) by its trans-
pose, taking expectations yields

μσ

μ

μ σ σ

{ ( + ) ( + )} = { ( ) ( )} − { ( ) ( )}

+ { ( ) ( ) { ( ) ( )} ( ) ( )}

+ { ( )} + ( )

E n n E n n E n n

E n n E n n n n

E s n

v v v v v v

x x v v x x

I I

1 1 2

4

T T
x

T

T T T

x q

2

2

2 2 2 2

Employing Assumption I, the third expected value of the right
side of (4) is

σ κ σ Δ

{ ( ) ( ) { ( ) ( )} ( ) ( )}

= ( { ( ) ( )}) + ( − ) { ( ) ( )} + ( )

E n n E n n n n

E n n E n n

x x v v x x

v v I v vTr 1 5

T T T

T
x x

T4 4

where Δ is defined in Appendix and its main diagonal elements
are zero. The kurtosis κ can never be less than 1, because

{ } ≥ [ { }]E x E x4 2 2 for the random variable x, due to Schwartz

inequality [28]. Substituting (5) into (4), we obtain

(
)

μσ

μ σ

κ

μ Δ μ σ σ

{ ( + ) ( + )} = { ( ) ( )} − { ( ) ( )}

+ ( { ( ) ( )})

+ ( − ) { ( ) ( )}

+ + { ( )} + ( )

E n n E n n E n n

E n n

E n n

E s n

v v v v v v

v v I

v v

I I

1 1 2

Tr

1

6

T T
x

T

x
T

T

x q

2

2 4

2 2 2 2 2

Taking the trace of both sides of (6) yields

μσ μ σ κ

μ σ σ σ

( + ) = ( − + ( + − )) ( )

+ + ( )

n L n

L L

MSD 1 1 2 1 MSD

7

x x

x s q

2 2 4

2 2 2 2

It is shown that for different reference inputs with the same
variance, the performance of the LMS is associated with the kur-
tosis of the reference input. In the following, it will be discussed in
more detail.

3.1. Stability

The mean square stability requirement based on (7) is
μσ μ σ κ| − + ( + − )| <L1 2 1 1x x

2 2 4 , i.e., μ should satisfy:

μ
κ σ

∈
( + − ) ( )

⎛
⎝⎜

⎞
⎠⎟L

0,
2

1 8x
2

It is known that the selection range of the step-size of the LMS
algorithm is strongly dependent on the power of the reference
input signal [3]. However, (8) also shows that the step-size bound
is also dependent on the kurtosis of the reference input signal.

Remark 1. (i) If there are different inputs with κ κ<1 2, we have

κ σ κ σ( + − )
<

( + − ) ( )L L
2

1
2

1 9x x2
2

1
2

(ii) From (7), the transient MSD behavior of the LMS is affected
by the factor μσ μ σ κ− + ( + − )L1 2 1x x

2 2 4 , which shows that the
reference input with large kurtosis leads to slow convergence rate.

3.2. Steady-state performance

Assuming that (7) is operating in steady-state, and (8) is sa-
tisfied, we have

μσ
μ κ σ

σ
μσ μ κ σ

( ∝ ) =
− ( + − )

+
− ( + − ) ( )

L
L

L

L
MSD

2 1 2 1 10
s

x

q

x x

2

2

2

2 2 4

which is a monotonically increasing function of κ > 0.

Remark 2. (i) According to (10), the steady-state MSD of the LMS
for the white reference input signal is not only controlled by the
step-size, the filter length, and the powers of desired and reference
input signals, but also dependent on the kurtosis of reference in-
put. For small kurtosis κ with κ⪡L , the steady-state MSD is weakly
correlated with κ. On the contrary, if there is a reference input
signal with κ⪢L , the correlation between steady-state MSD and the
kurtosis κ cannot be ignored. When the step-size is sufficiently
small such that μ⪡

κ σ( + − )L

2

1 x
2 , the steady-state MSD has little corre-

lation with κ.
(ii) If the step-size satisfies the condition μ⪡

κ σ( + − )L

2

1 x
2 , we have

from (10) for the time-varying system that

μσ σ
μσ

( ∝ ) = +
( )

L L
MSD

2 2 11
s q

x

2 2

2

From (11), we have the minimum MSD and the corresponding
optimum step-size [2]

Fig. 1. Adaptive noise cancelling.
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