
Web Semantics: Science, Services and Agents on the World Wide Web 39 (2016) 25–46

Contents lists available at ScienceDirect

Web Semantics: Science, Services and Agents
on the World Wide Web

journal homepage: www.elsevier.com/locate/websem

A multigranularity locking model for RDF
Mark Douglas Jacyntho ∗,1, Daniel Schwabe
Departamento de Informática, PUC-Rio, Av. Marquês de São Vicente, 225, Gávea, Rio de Janeiro - RJ, Brazil

a r t i c l e i n f o

Article history:
Received 20 September 2015
Received in revised form
29 March 2016
Accepted 30 May 2016
Available online 11 June 2016

Keywords:
Semantic web
RDF
Transaction
Transaction isolation
Concurrency control
Lock

a b s t r a c t

The advent of Linked Data is spurring the deployment of applications that use the RDF data model at
the information tier. In addition to querying RDF data, there is also the requirement for online updates
with suitable concurrency control. Client sessions in Web applications are organized as transactions
involving requests that read andwrite shared data. Executing concurrently, these sessionsmay invalidate
each other’s data. This paper presents a locking model, which is a variant of multigranularity locking
protocol (MGL), to address isolation between transactions thatmanipulate RDF data. Four ‘‘hierarchically’’
related granules are defined, as well as new read/write operations and their corresponding lock modes,
specifically created for the RDF data model. These new operations allow greater concurrency than the
classical read/write operations in relational databases. We assessed the performance of the proposed
locking model through model simulation.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the last few years, there has been an increasing interest in
semantic Web applications using the RDF data model as a persis-
tent domain layer. Moreover, there are cross-references between
widely spread applications, spurred in good part by the Linking
Open Data (LOD) initiative [1].

The availability of large RDF stores opens up a big opportunity
for exploration on how to use this new data model in large scale,
specially, how to deal with concurrent read/write accesses.

1.1. Motivation

In essence, a data model is just a way to view the data. The
established relational model views the data through relations
and tuples. The RDF graph model, based on triples, is a natural
representation for various types of applications (e.g., Facebook,
Twitter, recommender systems, etc.), where entities are strongly
connected with each other. In contrast with legacy RDBMS, these

∗ Corresponding author.
E-mail addresses:markjacyntho@gmail.com, mjacyntho@inf.puc-rio.br

(M.D. Jacyntho), dschwabe@inf.puc-rio.br (D. Schwabe).
1 Present addresses: Universidade Candido Mendes, Núcleo de Pesquisa e

Desenvolvimento, Rua Anita Peçanha, 100, Parque São Caetano, Campos dos
Goytacazes - RJ, Brazil; Instituto Federal de Educação, Ciência e Tecnologia
Fluminense Campus Campos-Centro, Rua Dr. Siqueira, 237, Parque Dom Bosco,
Campos dos Goytacazes - RJ, Brazil.

applications consider multi-valued properties to be so desirable in
modeling real-life data that they support multi-valued properties
by default. Querying formulti-valued and single-valued properties
is done in exactly the same way, without concerns about the
need to join with a third table to model an n-to-n relationship.
Furthermore, the RDF model is more convenient if the application
has high heterogeneity in its schema or frequent need for schema
adaptation. RDF stores simplify the development of linked data
applications, and also align very well with numerous algorithms
and statistical techniques developed for graphs.

This raises the issue of thewritability of RDF and Linked Data, as
corroborated by the creation of SPARQL 1.1 update standard. In [2],
Tim Berners-Lee pointed out:
‘‘When the Web was created, the idea was for a read–write Web.[...] If
the Web is genuinely to be a read–write Web, and if we are to pursue
a Web of Data, then it is essential that the Data Web should not be
read-only’’.

The problem to be tackled is the lack of a concurrency control
mechanism that properly isolates transactions that read and write
shared triples. The new questions addressed here are, can the
traditional locking model used in relational databases [3], be
reused? Are new locking models necessary? Is the optimistic
locking approach the only choice? Is there a feasible pessimistic
locking approach for RDF? Is there an opportunity to improve the
classical locking models?

There are several studies that address the performance issue
of complex queries over large amount of triples, proposing
improvements in indexing and query optimization [4–8]. The
vast majority of initiatives only address querying; only a small

http://dx.doi.org/10.1016/j.websem.2016.05.002
1570-8268/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.websem.2016.05.002
http://www.elsevier.com/locate/websem
http://www.elsevier.com/locate/websem
http://crossmark.crossref.org/dialog/?doi=10.1016/j.websem.2016.05.002&domain=pdf
mailto:markjacyntho@gmail.com
mailto:mjacyntho@inf.puc-rio.br
mailto:dschwabe@inf.puc-rio.br
http://dx.doi.org/10.1016/j.websem.2016.05.002


26 M.D. Jacyntho, D. Schwabe / Web Semantics: Science, Services and Agents on the World Wide Web 39 (2016) 25–46

number supports online updates; and are all based on versioning
(optimistic protocol or snapshot isolation). When using snapshot
isolation (SI) [9] the transaction sees a committed consistent state
of the data as it existed at the start of the transaction, and does
not see any concurrent updates. Since SI was formalized in [9]
it is known that it allows non-serializable executions that could
destroy the database’s consistency, in particular through the write
skew anomaly. In addition, SI uses an optimistic approach too, and
to prevent lost updates, awrite–write conflict will be raised causing
the latter transaction to abort at the end.

We observe that, in general, the approach for concurrency
control used in Web applications is optimistic locking, with
verification of conflicts at the end of the user interaction. Indeed,
as presented in detail in Section 8, the current state of the
art for locking in RDF stores are the optimistic and snapshot
mechanisms. No doubt these are simpler approaches, suitable
for the stateless behavior of the Web. Certainly in cases where
short write transactions conflict minimally and long-running
transactions are likely to be read-only, the optimistic approach
should present better results. But it probably is not good for long-
running write transactions competing with high-contention short
transactions, since the long-running transactions are unlikely to be
the first writer of everything they write, and so will probably be
aborted. So, there are also many circumstances where the use of
optimistic locking is improper, for example: when there are the so-
called hotspots—a small subset of the data which is updated very
frequently; in reservation systems with limited inventory items
(car reservations, tickets to events, plane seats, etc.); or for complex
data entry forms that consume a long time to be filled in.

From the end user’s perspective, it is unacceptable to make
him/her spend significant effort entering complex or extensive
information, only to discover at the end of the submission process
that the desired item is no longer available or that the underlying
database was significantly changed by a concurrent session, while
editing was being carried out (the so-called ‘‘user thinking time’’).
This occurs because another faster competing user gets ahold of the
referenced item (loading, editing and submitting it), while the user
in question is still inputting his/her information. Moreover, there
are critical use cases when the user needs to work with the last
committed state of the database, thus making the use of snapshots
impracticable.

We highlight three scenarios that require a pessimistic locking
approach for RDF, inspired by the realistic examples that motivate
the read–write Linked Data Platform architecture [10]:
1. Healthcare

‘‘For physicians to analyze, diagnose, and propose treatment
for patients requires a vast amount of complex, changing and
growing knowledge. This knowledge needs to come from a
number of sources, including physicians’ own subject knowl-
edge, consultation with their network of other healthcare pro-
fessionals, public health sources, food and drug regulators, and
other repositories of medical research and recommendations.
To diagnose a patient’s condition requires current data on the
patient’s medications and medical history’’ [10]. Current data
means up-to-date committed data.

2. Collaborative Model Driven Engineering (MDE)
In MDE, models, in their vast majority, are essentially graphs
of properties and values. The version control approaches
do not work well with models under concurrent access
(collaborative development). The version control systems
are geared to traditional textual artifacts (e.g. source code),
managing them line by line. But for models, line by line
management is not appropriate, but structural management,
properties and relationships. In general, creating/modifying a
model (e.g. business process workflow) demands considerable
effort and complex data entry. It would be unacceptable to use
the optimistic approach and detect conflicts at end and have to
redo the edition.

3. Knowledge in emergency management systems
In [11], an architecture is described that uses Linked Open Data
(LOD) in the design of an Emergency Management System,
where different types and sources of information are combined
to be used by the command team, designated to manage
an emergency, for decision making and for directing field
team operations. Three types of knowledge are combined:
the previous personal knowledge (team’s experience), formal
knowledge (general information originated from government
agencies) and the current contextual knowledge. Current
contextual knowledge is information generated during the
emergency evolution process. Situation assessment done by
field agents, including information about victims and damages,
orders issued by the command and their effects are examples
that help the command decision-making. This knowledge is
very dynamic and must to be up-to-date. It changes all the
time and thus it has to be constantly updated. In this case, few
data items (hotspots) are frequently updated and conflicts are
so likely that optimistic concurrency control wastes effort in
rolling back conflicting transactions.

From this discussion, it is clear that there is a need for pessimistic
locking model (where the user acquires the exclusive rights to
access a resource before changing it) for RDF. Today’s native RDF
stores do not support a fully pessimistic protocol. This pessimistic
model should explore the RDF datamodel to improve concurrency,
when compared to the traditional read and write locking model.
Improvement here means to find, for RDF, the adequate definition
of: lockable granules, possible operations (lock modes) on those
granules and, finally, the protocol for transactions to acquire and
release locks.

Selecting the right granule to lock requires a non-trivial balance
between locking overhead and the level of concurrency allowed.
Using coarse (i.e., large) granules incurs in low lock management
overhead, but may decrease concurrency, since larger portions
of the data may be locked. Conversely, finer (i.e., smaller)
granules improve concurrency, but require higher overhead for
lock management, since more locks are typically requested. It is
possible to benefit from both sides of this trade-off by means of
the multigranularity locking protocol (MGL), introduced by Gray
et al. [12]. MGL allows each transaction to use the granule size
most appropriate for its access profile. For example, if a transaction
accesses many records of a file, it simply locks the whole file
rather than locking only required records. Long transactions can
lock coarse granules. Short transactions can lock fine granules. In
this fashion, long transactions do not waste time setting up too
many locks, and short transactions do not artificially interfere with
others by locking portions of the dataset that they do not access.

1.2. Contribution

In this paper, we propose a novel pessimistic concurrency
control model for RDF, defined by:

• four ‘‘hierarchically’’ interrelated granules;
• six new lock modes inspired by the basic principle of removal

and insertion of RDF triples, and
• a protocol to set and release locks for transactions that is an

adaptation of the MGL protocol.

It is important to clarify that the goal is to isolate updates in a
centralized dataset, under a single control. At this stage, we are
not addressing updates on multiples geographically distributed,
independent datasets, such as in the Web of Linked Data [1].
Due to its open nature, RDF data is often treated as incomplete,
following the Open World Assumption (OWA). On the other hand,
the SPARQL language interprets RDF data under Closed-World
Assumption (CWA). This semantic distance opens up an avenue for



Download English Version:

https://daneshyari.com/en/article/561747

Download Persian Version:

https://daneshyari.com/article/561747

Daneshyari.com

https://daneshyari.com/en/article/561747
https://daneshyari.com/article/561747
https://daneshyari.com

