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a b s t r a c t

This paper proposes a new matrix shrinkage algorithm for matrix rank minimization
problems. The proposed algorithm provides a low rank solution by estimating a matrix
rank and shrinking non-dominant singular values iteratively. We study the convergence
properties of the algorithm, which indicate that the algorithm gives approximate low-
rank solutions. Numerical results show that the proposed algorithm works efficiently for
hard problems with low computing time.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

This paper deals with the following affine rank mini-
mization problem:

Minimize rank X subject to AðXÞ ¼ b; ð1Þ
where XARm�n is a design variable, mrn, A : Rm�n-Rp is
a given linear operator, and bARp is a constant vector.
Unfortunately, this problem is NP-hard in general however
has a lot of applications in engineering such as collabora-
tive filtering [1], low-order model fitting and system
identification [2], image inpainting [3] and quantum state
tomography [4]. Therefore it is important to provide a fast
algorithm to obtain approximately low-rank solutions.

Several useful and practical algorithms have been
proposed [5–14],1 and most of them use the singular value
decomposition (SVD). While the SVD takes a lot of com-
putational cost for large size matrices, we can reduce the
cost by utilizing the truncated approximate SVDs such as

Linear-Time SVD [15] and randomized SVD [16]. The trun-
cated SVDs require the rank of X, and therefore it is
important to estimate the rank. According to rank estimation
schemes, the SVD based algorithms can be grouped into two
approaches: a high rank approximation approach and a low
rank approximation approach. The iterative reweighted least
squares (IRLS) algorithm [5] and the fixed point continuation
algorithms (FPCA) [8] carry out the SVD of a high rank matrix
(usually a full rank matrix) at the first iteration and then
lower rank matrices. Since the SVD of high rank matrices is
required even when the optimal solution is very low rank,
these algorithms take a lot of computing time for large size
problems. Contrarily, the singular value thresholding (SVT)
algorithm [10], PowerFactorization (PF) [11], ADMiRA [13]
and the singular value projection (SVP) algorithm [14] give a
candidate for a low-rank solution as very low rank matrix
(usually a rank-1 matrix) at the first iteration and then
updates it as a higher rank matrix. Since the truncated SVD
of very low rankmatrices is much faster than that of full rank
matrices, these algorithms are fast for large size problems
with very low rank solutions. Motivated by this approach,
this paper proposes a rank minimization algorithm which
begins with a rank-1 approximation and avoids the full SVD.
A lot of numerical results show that the IRLS algorithm is one
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of the best algorithms that solve harder problems, and there-
fore the objective of this paper is to propose a new rank
minimization algorithm which has the same performance to
solve hard problems as IRLS and takes less computing time
using a low rank approximation approach.

First this paper provides an iterative partial matrix
shrinkage (IPMS) algorithm for the affine rank minimiza-
tion with given rank, and then a rank estimation scheme
which starts with the rank-1 approximation is proposed.
Because IPMS empirically recovers a low rank matrix well
even when the given rank is smaller than the true rank,
IPMS is suitable for a low rank approximation approach,
which leads to computational cost reduction by applying
the truncated random SVD. Next the convergence proper-
ties are provided to show that IPMS gives an approximate
low-rank solution. Finally, numerical examples show that
IPMS has a good performance to solve the rank minimiza-
tion problem and takes low computing time comparing
with other algorithms.

2. Main results

First we consider the following feasibility problem
associated with (1):

Find X subject to rank X ¼ r; AðXÞ ¼ b; ð2Þ

where r is a given constant. Let the SVD of X to be given by
X ¼UΣVT , where

Σ ¼ diagð½s1 s2 … sm�T Þ; s1Zs2Z⋯Zsm; ð3Þ

and define a singular value thresholding operator Dr :

Rm�n-Rm�n as DrðXÞ ¼UDrΣV
T , where Dr is a diagonal

matrix whose first r elements are 0 and whose other
elements are 1. Trivially X is a solution of (2) if and only if it
satisfies the following equations:

DrðXÞ ¼ 0m;n

AðXÞ ¼ b:

(
ð4Þ

Similar to the constraint removal (CR) algorithm for the
sparse optimization [17], this paper provides an algorithm
consisting of two interleaved parts in each iteration,
estimating the solution X for given Dr and estimating a
new Dr. Contrary to the case of the CR algorithm, it is hard
to solve Eq. (4), and therefore this paper proposes a matrix
shrinkage based algorithm.

In order to describe a scheme to obtain a solution of (4),
we define a partial matrix shrinkage operator T r;λðXÞ :
Rm�n-Rm�n as follows:

T r;λðXÞ ¼U diag
rr

rþ
r

" # !
VT ;

where

rr ¼ ½s1 … sr �T ;

rþ
r ¼ ½ðsrþ1�λÞþ … ðsm�λÞþ �T ;

and ðaÞþ is defined as ðaÞþ ¼maxða;0Þ. This paper
proposes the following iterative scheme to find X

satisfying (4):

Ykþ1 ¼ T r;λk ðXkÞ
Xkþ1 ¼ Ykþ1�AnðAðYkþ1Þ�bÞ;

8<
: ð5Þ

where Xk and λk denote a candidate for X and a shrinkage
parameter at the kth iteration, respectively. While most
matrix shrinkage based algorithms shrink all singular
values, the above scheme does not shrink the top r
singular values to find a rank r matrix. We can confirm
that Xk always satisfies AðXkÞ ¼ b and that DrðYkÞ ¼ 0m;n if
λkZsr . The update (5) with λk ¼ sr is equivalent to the
iterative hard thresholding (IHT) algorithm in [9]. Experi-
mental results show that the hard thresholding (λk ¼ sr)
works well for the problem (2), that is, the problem with
given rank of X, however, its performance is worse when
the given rank is different from the true rank. If λk is small,
the singular values si for i4r are decreased and converge
to 0 gradually, which leads the update (5) to be robust for
misestimation of rank X. This paper proposes the update
rule to determine λk as λk ¼ δskr , where δA ð0;1�, and skr
denotes the rth largest singular value of Xk. Then the
iterative partial matrix shrinkage (IPMS) is proposed as
shown in Algorithm 1, where ηδ41, and δ is reduced
gradually to achieve fast convergence and precise recovery
of a low rank matrix. Comparing with other matrix
shrinkage algorithm, this algorithm is more robust for
the case that the given rank r is less than the true rank,
which can be seen in Section 4.

Algorithm 1. Iterative partial matrix shrinkage (IPMS).
Input: X0, δ0, ɛ, ηδ ,

k’0.
δ’δ0.
while not converge do

repeat

½Uk; sk1; s
k
2 ;…;sm ;V

k�’SVDðXkÞ.
rk’given rank r or estimated by Algorithm2

λk’δskrk .

Ykþ1’T rk ;λk ðXkÞ.
Xkþ1’Ykþ1�AnðAðYkþ1Þ�bÞ.
k’kþ1.

until ‖Xkþ1�Xk‖F=‖Xk‖F oɛ
δ’δ=ηδ .

end while
Output: low-rank solution Xk

Next we focus on the problem of estimating the rank of X.
This paper proposes a matrix rank estimation heuristic as
shown in Algorithm 2, where 0oαminoα0r1 and ηZ1. We
use this algorithm at each iteration in Algorithm 1. The
algorithm assumes that the singular values of X tend to
separate into two clusters and estimates its rank by using
αsk1 as the threshold of these clusters, that is, the algorithm
gives the rank r if skr Zαsk14skrþ1. If η¼ 1, that is, αk is a
constant for all k, this estimation scheme is exactly the same
as that of [5]. The value of α is gradually decreased as
α¼ α0=ðηαÞk�1. In the case of α0 ¼ 1, it estimates the rank of
Xk as 1 at the beginning of iterations and then provides
gradually higher rank, that is, it usually gives lower rank than
the true rank. Since IPMS is empirically robust for the case
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