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Abstract

Objective: The present study investigated frequency dependent developmental patterns of the brain resting-state networks from
childhood to adolescence.

Method: Magnetoencephalography (MEG) data were recorded from 20 healthy subjects at resting-state with eyes-open. The
resting-state networks (RSNs) was analyzed at source-level. Brain network organization was characterized by mean clustering coef-
ficient and average path length. The correlations between brain network measures and subjects’ age during development from child-
hood to adolescence were statistically analyzed in delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta (12–30 Hz) frequency
bands.

Results: A significant positive correlation between functional connectivity with age was found in alpha and beta frequency bands.
A significant negative correlation between average path lengths with age was found in beta frequency band.

Conclusions: The results suggest that there are significant developmental changes of resting-state networks from childhood to
adolescence, which matures from a lattice network to a small-world network.
� 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
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1. Introduction

It has been shown that the blood oxygen level-
dependent (BOLD) signal fluctuations can be detected
in the absence of an explicit task (resting state). This
phenomenon is most easily demonstrated in quietly rest-
ing humans, therefore, the associated spatially separate
brain regions are now widely known as resting-state

networks (RSNs) [1]. RSNs is unique in terms of its high
resting metabolism, deactivation profile during
cognitively demanding tasks [2,3], and increased activity
during high-level social cognitive tasks [4]. Though pre-
cise functions of RSNs are still largely unknown, it has
been shown that brain regions of RSNs are involved in
the integration of autobiographical, self-monitoring and
social cognitive functions [5,6]. The available evidences
suggest that RSNs reflect slow, synchronous,
spontaneous fluctuations of spatially organized neural
signaling, which may be involved in the construction
or development of neural networks.
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The synchronization of activity between distributed
brain regions is assumed to reflect functional interac-
tions between brain regions and is referred to as func-
tional connectivity [7]. Brain is increasingly seen as a
complex network of dynamical systems with functional
connectivity between local and remote brain regions.
There are several motivations for using network to char-
acterize the brain [8]. First, network analysis promises to
reliably quantify the brain with a small number of
neurobiologically meaningful and easily computable
measures [9–13]. Second, by explicitly defining anatom-
ical and functional connections on the same map of
brain regions, network analysis may be a useful setting
for exploring structural–functional connectivity rela-
tionships [14,15]. Third, comparisons of structural or
functional network topologies between subject popula-
tions appear to reveal presumed connectivity abnormal-
ities in neurological and psychiatric disorders [16,17]. To
characterize the brain network, mean clustering coeffi-
cient and average path length are the most frequently
used measures in the network analysis. Mean clustering
coefficient measures how well connected the neighbors
of a node are to one another, which is a measure of func-
tional segregation. Average path length measures the
average number of steps needed to go between any
two nodes, which is a measure of functional integration.

Previous fMRI studies have shown that the horizon-
tal interhemispheric functional connections were already
established in preadolescent children [18]. The RSNs is
only sparsely connected in children aged 7–9 years [19].
Over adolescence, short range correlation tends to
weaken, whereas long-range, especially anterior-
posterior connection starts to strengthen [20]. The
long-range connections increased over development to
form complete networks like the RSNs in adults
[21,22]. However, fMRI mainly detect brain activity at
a very low frequency range (nominally, <0.1 Hz) by
measuring BOLD signals.

Magnetoencephalography (MEG) has also been used
to study RSNs. de Pasquale et al. [22] showed correla-
tion between resting state temporal MEG signals origi-
nating in nodes of the default mode network (DMN)
and the ‘‘task positive” or dorsal attention network
(DAN). Liu et al. [23] examined correlations between
oscillatory power envelopes at the sensor level showing
that significant envelope correlation could be measured
across hemispheres. Brookes et al. [24] used seed-based
envelope correlation in conjunction with beamformer
spatial filtering methods to show interhemispheric
motor cortex connectivity in source space.

The objective of the present study was to investigate
RSNs with MEG at source-level in multiple-frequency
ranges. Our central hypothesis is that the structure of
RSNs changes with age in multiple frequency ranges.
A better understanding about the developmental
changes of RSNs will provide novel insight into the

functional maturation of the brain and help us to iden-
tify functional impairments and/or developmental delay
in children with a variety of disorders.

2. Materials and methods

2.1. Subjects

Twenty volunteers who met the inclusion criteria
(age: 6–16 years; mean age: 11 years; girls: 13; boys: 7),
participated in this study. A written informed consent,
at Cincinnati Children’s Hospital Medical Center
(CCHMC), was obtained from each child and from
the parent/legal guardian of each child. This study was
approved by the Institutional Review Board (IRB) at
CCHMC. The inclusion criteria for participation were:
(1) healthy (i.e., without history of neurological
disorder, psychiatric disease, or brain injury); (2) normal
hearing, vision, and hand movement; (3) age at appoint-
ment time between 6 and 16 years old; (4) completion of
a questionnaire based on the Edinburgh Handedness
Inventory (Oldfield, 1971) to indicate dominant hand.
The exclusion criteria for participation were: (1) subject
data contained excessive motion artifacts (difference in
head localization before and after was greater than
5 mm); (2) subjects with excessive unidentifiable
magnetic noise during recording; (3) subjects with
claustrophobic tendencies or (4) pregnancy.

2.2. MEG recordings

The MEG data were recorded using a whole-head
CTF 275-Channel MEG system (VSM Medical Tech-
nology Company, Canada) in a magnetically shielded
room (MSR), which is dim light. Before MEG record-
ing, three small coils were attached to the nasion, and
the left and right pre-auricular points of each subject.
The subject’s head positions were measured relative to
the MEG sensors for every 2 min block using the three
coils. The large head movement during MEG recordings
might affect the accuracy of source localization. If head
movement during a recording was beyond 5 mm, that
dataset was indicated as ‘‘bad” and an additional data-
set was recorded. MEG signal was acquired at a sam-
pling rate of 6000 Hz with a noise cancelation of third
order gradients. To identify system and environmental
noise, we routinely recorded one MEG dataset without
patient just before the experiment.

Subjects were asked to lie on a bed, keep their eyes
open and stay still (avoid swallowing or teeth clenching).
Continuous MEG recordings were completed in 2 min
time blocks and repeated 2 times for a 4 min total
recording. The segments of MEG data with artifacts
were set as ‘‘bad segments”, which were automatically
excluded from network analysis in our software
package.
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