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A B S T R A C T

Learning of prediction error (PE), including reward PE and risk PE, is crucial for updating the prediction in
reinforcement learning (RL). Neurobiological and computational models of RL have reported extensive brain
activations related to PE. However, the occurrence of PE does not necessarily predict updating the prediction,
e.g., in a probability-known event. Therefore, the brain regions specifically engaged in updating the prediction
remain unknown. Here, we conducted two functional magnetic resonance imaging (fMRI) experiments, the
probability-unknown Iowa Gambling Task (IGT) and the probability-known risk decision task (RDT).
Behavioral analyses confirmed that PEs occurred in both tasks but were only used for updating the prediction
in the IGT. By comparing PE-related brain activations between the two tasks, we found that the rostral anterior
cingulate cortex/ventral medial prefrontal cortex (rACC/vmPFC) and the posterior cingulate cortex (PCC)
activated only during the IGT and were related to both reward and risk PE. Moreover, the responses in the
rACC/vmPFC and the PCC were modulated by uncertainty and were associated with reward prediction-related
brain regions. Electric brain stimulation over these regions lowered the performance in the IGT but not in the
RDT. Our findings of a distributed neural circuit of PE processing suggest that the rACC/vmPFC and the PCC
play a key role in updating the prediction through PE processing during decision making.

Introduction

During decision making, prediction error (PE) arises when there is
a difference between expected and actual outcomes (Lak et al., 2014).
The utilization of PE depends on the decision environment: in
probability-known cases, because we never know the final result of
this probabilistic event, there will be a PE after each event even if
predictions are correct on average. However, the occurrence of PE does
not indicate PE learning (i.e., using PEs to update the prediction)
because we know that the probability never changes (Bach and Dolan,
2012). In an instructive task, there is no learning from PE for updating
the prediction either (Li et al., 2011). However, in some other cases, for
example, when the association between two consecutive events is
unknown, such association can be learned via learning of PE. That is,

the occurrence of PE would further be used to reshape the prediction
and optimize strategies, which is the main idea of reinforcement
learning (RL) (Davidow et al., 2016). Hence, it is evident from human
behaviors that PE is used at different levels under different conditions.

Based on recent studies on learning, RL and Bayesian learning are
the two major current frameworks (Mathys et al., 2011). When the
environment's stochastic properties change over time (i.e., the envir-
onment is volatile) (Silvetti et al., 2013), "learning" refers to plasticity
or switch, and Bayesian learning can beautifully capture it. However, in
a stable environment with an unknown association between two
consecutive events, "learning" refers to updating the prediction through
PE. Under this condition, RL has been widely used in the analysis
(d'Acremont et al., 2009; Glascher et al., 2010; Davidow et al., 2016).

Learning from PE for updating the prediction in RL has been a
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long-lasting question in neuroscience. Many studies have found
extensive of PE-related brain activations (e.g., the dopamine system
including the striatum, the prefrontal cortex, etc.) (Schultz et al., 1997;
Preuschoff et al., 2008; d'Acremont et al., 2009; Glascher et al., 2010;
Bach and Dolan, 2012; Robinson et al., 2013). However, considering
different levels of PE utilization under different conditions, we do not
think that all these PE-related brain activations directly contribute to
updating the prediction. However, most previous studies have only
focused on general neural coding of PE and its alignment with behavior
but did not compare the different kinds of PE processing directly
(Schultz et al., 1997; Preuschoff et al., 2008; d'Acremont et al., 2009;
Glascher et al., 2010; Bach and Dolan, 2012; Robinson et al., 2013).
Therefore, the neural mechanism that specifically underlies learning
from PE for updating the prediction during the decision making "still
awaits formalization" (Bach and Dolan, 2012). Clarifying the specific
roles of PE-related brain regions in RL may help us understand the
function of the dopamine system.

In this study, we adopted the probability-unknown Iowa Gambling
Task (IGT) (Bechara et al., 1994) and the probability-known Risk
Decision Task (RDT) (Preuschoff et al., 2006) (Fig. 1). The invariable
probability to win or lose on the IGT is unknown to the participants
before the experiment and requires the participants to learn, while the
probability to win or lose on the RDT is explicitly known to the
participants. The only difference of PE processing between these two
tasks is updating the prediction (Oya et al., 2005; Worthy et al., 2013).
PEs are only represented on the RDT but are represented and used for
updating the prediction on the IGT. Furthermore, we hypothesize a set
of common PE-related brain regions between the IGT and the RDT that
may be related to PE representation. We also hypothesize an additional
set of PE-related brain regions preferentially activated on the IGT (i.e.,
IGT > RDT) that may be specifically associated with updating the
prediction.

Most studies considered the reward PE in the RL (Glimcher, 2011;
Schultz, 2016), but the risk PE should also be considered for RL as

shown in this and a previous study (d'Acremont et al., 2009). In
addition, d’Acremout et al. (2009) reported that reward and risk PE
were processed by distinct neural circuits during RL. In this study, we
tested whether this distinction is universal for both PE representation
and updating the prediction through learning from PE. We hypothesize
that reward PE-related brain regions are also related to risk PE during
updating the prediciton because updating the prediction through
learning from reward PE is assumed to be risk-sensitive (Tobler
et al., 2005; Preuschoff and Bossaerts, 2007; Bossaerts, 2010).
Therefore, brain regions specifically related to reward or risk PE and
brain regions responding to both PEs need to be separated as clear as
possible. For this purpose, we adopted a Multi-Voxel Pattern Analysis
(MVPA)-like pattern analysis to improve the sensitivity of the response
characteristics of a voxel (Rivolta et al., 2014; Dubois et al., 2015).

Through comparing the IGT and the RDT, we identified brain
regions associated with PE representation and updating the prediction.
Furthermore, two more ROI-based analyses were conducted to confirm
our hypothesis. We explored the modulatory effect of uncertainty on
the activation in these brain regions (Fan, 2014), and we tested
functional connectivity between these ROIs and prediction-associated
brain regions via psychophysical interaction (PPI) analysis.

Finally, because most functional magnetic resonance imaging
(fMRI) data can provide correlation but cannot readily demonstrate
necessity (Wang et al., 2014), we used high-definition transcranial
direct current stimulation (HD-tDCS) to alter the activation in updat-
ing the prediction-related brain regions. We hypothesize that electric
stimulation over these regions influences the performance on the IGT
but not the RDT.

Materials and methods

Participants

Forty-nine healthy participants performed the IGT, and an inde-
pendent sample of forty-one healthy participants performed the RDT.
Data from eight participants on the IGT and one participant on the
RDT were discarded owing to head movement in the MRI scanner
(more than 2 mm) or to outlier properties (more than five missed
choices or worse performance than the random data). Therefore, data
from forty-one participants on the IGT (5 female; mean age ± SD,
22.42 ± 1.81 years; mean education ± SD, 16.02 ± 1.77 years) and
forty participants on the RDT (5 females; mean age ± SD, 23.55 ±
2.14 years; mean education ± SD, 16.88 ± 1.87 years) were included
in subsequent behavioral and fMRI analysis.

All participants were graduate or undergraduate students from the
University of Science and Technology of China and reported no prior
knowledge of the task. All participants were right-handed, and
participants were excluded if they had any major medical illnesses,
major psychiatric disorders, or neurological illnesses, or displayed
gross structural abnormalities based on their T1-weighted images. No
participants had a history of dependence (current or past) on any drug.
Informed consent was obtained from all participants, and the study
was approved by the Research Ethics Committee of the University of
Science and Technology of China and conformed to the tenets of the
Declaration of Helsinki.

Procedure

On both the IGT and the RDT, participants were first instructed to
make repeated choices from four decks to gain or lose certain points
and were informed that their payment would depend on their final
accumulated points. Further, on the IGT, participants were told that
there were "good decks" and "bad decks" that would result in a net gain
or a net loss, respectively, in the long term, thus requiring them to
learn; on the RDT, participants were instructed in accordance with the
indicated task description (Fig. 1). Subsequently, participants com-

Fig. 1. An illustration of the experimental tasks. On the IGT and the RDT, each trial was
divided into the following events: (1) during the choice phase, four seconds were
provided for choice pondering and selection, and if no choice was made within 4 s, the
computer would make a random choice; (2) during the outcome evaluation phase, the
outcome was presented on the screen for 1 s. After each trial, the next trial began
immediately without inter-trial intervals (ITIs). The green bar continually shows the base
endowment throughout the task, and the orange bar shows the real-time accumulation of
points.
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