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A B S T R A C T

Memories are assumed to be represented by groups of co-activated neurons, called neural ensembles.
Describing ensembles is a challenge: complexity of the underlying micro-circuitry is immense. Current
approaches use a piecemeal fashion, focusing on single neurons and employing local measures like pairwise
correlations. We introduce an alternative approach that identifies ensembles and describes the effective
connectivity between them in a holistic fashion. It also links the oscillatory frequencies observed in ensembles
with the spatial scales at which activity is expressed. Using unsupervised learning, biophysical modeling and
graph theory, we analyze multi-electrode LFPs from frontal cortex during a spatial delayed response task. We
find distinct ensembles for different cues and more parsimonious connectivity for cues on the horizontal axis,
which may explain the oblique effect in psychophysics. Our approach paves the way for biophysical models with
learned parameters that can guide future Brain Computer Interface development.

Introduction

Memories are assumed to be represented by groups of co-activated
neurons, called neural ensembles. How to identify and describe neural
ensembles has long been a central issue in neuroscience (Hebb, 1949).
It is not an easy task: one has to deal with an immensely complex
system where billions of neurons are linked to each other through
trillions of connections. A further complication is that neurons can
have multiple functions, especially in higher level cortex (Fusi et al.,
2016; Rigotti et al., 2013). Thus, the same neurons may participate in
many different ensembles and, conversely, different ensembles might
share some of the same neurons. Clearly, the structure of these
ensembles cannot be described in terms of anatomical connectivity
only: if anatomical connectivity was all there was to ensembles, then
activating one would activate others leading to a jumble of ensembles.
Further, anatomy alone seems to preclude a hallmark of higher
cognition: flexibility. Ensembles should be able to break apart and
re-form from moment to moment without changing the underlying
anatomy. Finally, ensembles are functional units and thus defining
them based on anatomy alone is not possible in a behavioral context.

Previous work has attempted to identify neural ensembles using
electrophysiological measures (Brown et al., 1998; Diba and Buzsáki,
2007; Johnson and Redish, 2007) and more recently optogenetics and
immediate early gene (IEG) labelling (Ryan et al., 2015). However, due

to slow dynamics, these approaches can only provide limited insights
into fast activity and neural oscillations that are thought to play a key
role in memory function and ensemble formation (Buschman et al.,
2012; Fries et al., 2007; Fusi et al., 2016; Haegens et al., 2011; Miller
and Buschman, 2013). Thus far, electrophysiology studies have only
considered neural ensembles in a piecemeal fashion, that is, using
pairwise correlations. They have focused on single neurons and/or
functional connectivity between pairs of neurons and/or recording
sites; the existence of an ensemble is thus inferred indirectly
(Buschman et al., 2012; Gray, 1999; Modi et al., 2014).

Here, we suggest an alternative approach to identifying ensembles
based on effective connectivity. We describe ensemble properties using
neurophysiological data combined with ideas from biophysical model-
ing, unsupervised learning and complex systems theory. We analyzed
multiple-electrode recordings obtained during a classic test of working
memory: spatial delayed response (Funahashi et al., 1990; Fuster et al.,
1985). We examined LFPs between simultaneously recorded electrodes
in dorsolateral prefrontal cortex (PFC), supplementary eye field (SEF),
and frontal eye fields (FEF). Our goal was to identify neural ensembles
carrying spatial information in a holistic, not piecemeal, fashion and
describe the connections that form them.

We used brain decoding algorithms, graph theory and spectral
analysis to understand the structure of neural ensembles that give rise
to observed patterns of LFP responses. This allowed us to treat neural
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ensembles as complex networks and to describe properties of the
underlying connectivity. We obtained the estimates of effective con-
nectivity underlying the ensembles by training a biophysical neural
field model as a particular type of deep neural network called an auto-
encoder. We found that we could describe ensemble properties and use
them to decode the spatial location held in working memory using only
a few parameters, which makes this approach computationally tract-
able. Further, it also revealed ensemble properties that cannot be
observed using pairwise correlations. For example, using topological
measures, we found that network connectivity in the spatial delayed
response task was different for different cued locations. Cues on the
horizontal axis had shorter characteristic path lengths (the least
number of steps between different network nodes) than others. This
could explain the oblique effect (psychophysics performance is better
for stimuli on than off the horizontal/vertical axes). We also found
connectivity and corresponding oscillatory dynamics across different
spatial scales and different frequencies within cortical areas, which
gives a new dimension to cortical network interactions.

Materials and methods

Experimental data and recording setup

Two adult male monkeys (monkey C, Macaca fascicularis, 9 kg;
monkey J, Macaca mulatta, 11 kg) were handled in accordance with
National Institutes of Health guidelines and the Massachusetts
Institute of Technology Committee on Animal Care. They were trained
to perform an oculomotor spatial delayed response task. This task
required the monkeys to hold the location of one of six randomly
chosen visual targets (at angles of 0°, 60°, 120°, 180°, 240° and 300°,
12.5° eccentricity) in memory over a brief (750 ms) delay period and
then saccade to the remembered location. If a saccade was made to the
cued location, the target was presented with a green highlight and a
water reward was delivered otherwise the target was presented with a
red highlight and reward was withheld. Three 32-electrode chronic
arrays were implanted unilaterally in PFC, SEF and FEF in each
monkey (Fig. 1A). Each array consisted of a 2 × 2 mm square grid,
where the spacing between electrodes was 400 µm. The implant
channels were determined prior to surgery using structural magnetic

resonance imaging and anatomical atlases. From each electrode, we
acquired both threshold-crossing spike waveforms and local field
potentials (extracted with a fourth order Butterworth low-pass filter
with a cut-off frequency of 500 Hz, and recorded at 1 kHz) using a
multichannel data acquisition system (Cerebus, Blackrock
Microsystems). We analyzed local field potentials (LFPs) during the
delay period when monkeys held the cued locations in memory. We
assumed that each electrode sampled LFP activity from a neural
population in its proximity and modelled each brain area as a cortical
area sampled at N = 32S locations. LFP activity was modelled by a
mathematical model of wave dynamics known as a neural field.
Electrodes were numbered in a monotonic fashion; neighbouring
electrodes had adjacent numbers.

Neural ensembles for memory maintenance

Using a neural field model allowed us to use patterns of LFP activity
across recording sites to infer the underlying effective connectivity for
each of the cued locations. Neural fields provided a quantitative way to
describe each ensemble's network interactions and make predictions
about patterns of activity that correspond to different attractor states,
see Fig. 1B. Each attractor state can be considered to reflect an
ensemble or engram (Liu et al., 2012). This is also related to chimera
states and metastability (Martens et al., 2016). Our goal was to obtain
learned connectivity parameters that can describe the structure of
neural ensembles activated while remembering different stimuli. The
spacing between electrodes was larger (400 µm) than what is thought
to be the origin of the LFP signal (250 µm, see Katzner et al., 2009).
Using brain decoding algorithms and graph theoretic measures (cen-
trality) we quantified the separability of neural ensembles in SEF and
FEF (see below). However, volume conduction could in principle
introduce confounds. These can be accommodated by using the
effective connectivity parameters obtained here as priors to fit a more
complicated biophysical model that accounts for volume conduction
effects (Pinotsis et al., 2014). As it is common in computational
neuroscience and modern machine learning approaches, we describe
neural activity using a one dimensional model. In this model, space is
defined along the line traced out by the electrodes. This is similar to
ring models (Ben-Yishai et al., 1997; Somers et al., 1995), recurrent

Fig. 1. A. Recording setup. Three 32-electrode chronic microelectrode arrays were implanted in dorsolateral prefrontal cortex (PFC), supplementary eye field (SEF), and frontal eye
field (FEF) in each monkey. Each array consisted of a 2 × 2 mm square grid, where the spacing between electrodes was 400 µm. Ps: principal sulcus; As: arcuate sulcus. One monkey
received implants in the left hemisphere and the other in the right hemisphere. These were located near Ps and As in both monkeys. B. Neural field model and connections. Neural fields
provided a quantitative way to describe each ensemble's network interactions and patterns of activity across simultaneously recorded sites. The same model can describe different
ensembles. Each electrode occupies a position on a cortical manifold (line) W parameterized by the variable υ and is connected to all other electrodes with connections whose strength
follows a Gaussian profile (coloured solid and dashed lines), see also Eq. (4).
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