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A B S T R A C T

Brain networks use neural oscillations as information transfer mechanisms. Although the face perception
network in occipitotemporal cortex is well-studied, contributions of oscillations to face representation remain
an open question. We tested for links between oscillatory responses that encode facial dimensions and the
theoretical proposal that faces are encoded in similarity-based “face spaces”. We quantified similarity-based
encoding of dynamic faces in magnetoencephalographic sensor-level oscillatory power for identity, expression,
physical and perceptual similarity of facial form and motion. Our data show that evoked responses manifest
physical and perceptual form similarity that distinguishes facial identities. Low-frequency induced oscillations (
< 20 Hz) manifested more general similarity structure, which was not limited to identity, and spanned physical
and perceived form and motion. A supplementary fMRI-constrained source reconstruction implicated fusiform
gyrus and V5 in this similarity-based representation. These findings introduce a potential link between “face
space” encoding and oscillatory network communication, which generates new hypotheses about the potential
oscillation-mediated mechanisms that might encode facial dimensions.

Introduction

Neural oscillations (rhythmic neural firing) are ubiquitous features of
the brain and furnish mechanisms contributing to network communication
(Engel and Singer, 2001; Salinas and Sejnowski). Synchronization of
membrane potentials enhances coupling between brain regions, allowing
them to control information flow and organize specific functional networks
(Fries, 2005, 2009). Hierarchical processing among visual areas may be
mediated by oscillatory mechanisms, with forward (bottom-up) and back-
ward (top-down) communication between higher- and lower-level visual
areas carried respectively by high- (gamma) and low- (beta) frequency
oscillations (Michalareas et al., 2016). These connectivity mechanisms
could enable “binding” of visual dimension representations into unitary
object percepts (Engel and Singer, 2001). Although these mechanisms have
perhaps been best-studied for visual processes in non-human animals,
neural oscillations are also a hallmark of visual processing in humans. Low-
frequency power modulation is a ubiquitous feature of visual responses
measured by electroencephalography (EEG) and magnetoencephalography
(MEG). A negatively-deflected alpha/beta (10–30 Hz) response, in parti-
cular, putatively indexes visual object encoding (Hanslmayr et al., 2012).
Nevertheless, more could be learned about how this low-frequency power

deflection gives rise to visual encoding, what information is encoded, and in
what format.

An example of a brain network in the human whose communica-
tion may be mediated by oscillatory mechanisms is the well-studied
network of discrete functional areas in ventral occipital cortex,
fusiform gyrus, V5 and superior temporal sulcus (Haxby et al.,
2001; Furl et al., 2015) associated with perception of dynamic faces
and localized using functional magnetic resonance imaging (fMRI).
These face-selective and motion-sensitive areas encode the form and
motion information used to recognize faces and their emotional
expressions and presumably give rise to oscillatory signals that
reflect this encoding and that would be detectable using MEG. For
example, spatial locations in static photographs of facial forms
useful for expression categorization is reflected in both power and
phase of oscillations below 25 Hz (Schyns et al., 2011). Several
studies have now also examined dynamic facial movements and
illustrated a role for low-frequency oscillations. This frequency
range is modulated by motion and form information present in
facial video (Muthukumaraswamy et al., 2006; Virji-Babul et al.,
2007; Popov et al., 2013; Furl et al., 2014; Güntekin and Başar,
2014; Jabbi et al., 2015; Fox et al., 2016; Symons et al., 2016).
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These findings suggest that oscillations, especially in low frequen-
cies, may be transmitting the information about form and motion
processed in the aforementioned face perception network.

We propose to go beyond these existing studies by investigating the
role of neural oscillations in face perception from the standpoint of
similarity-based representations. A longstanding theory (Valentine, 1991)
of face recognition posits a similarity-based “face space”, where faces are
encoded relative to a set of constituent attributes in a multidimensional
feature space and evaluated based on their similarity with learned
representations. This formulation motivated us to test whether oscillatory
power might also reflect representational distances between faces based
on their physical and perceptual similarity. Such similarity-based object
representations have been discovered using time-domain data from EEG
(Kaneshiro et al., 2015), MEG (Cichy et al., 2014), intra-cranial recording
(Op de Beeck et al., 2001; Kiani et al., 2007) and fMRI (Haushofer et al.,
2008; Drucker and Aguirre, 2009; Proklova et al., 2016) and for static
facial attributes such as identities (Vida et al., 2017), configurations
(Goesaert and Op de Beeck, 2013) and gaze directions (Carlin et al.,
2011). However, these results are limited to time-domain data, and they
cannot link stimulus information content with potential neural mechan-
isms manifested by oscillatory power. Much, therefore, remains to be
learned about how oscillations might (or might not) reflect similarities
among faces, relative to constituent features in a multidimensional
similarity space.

Here, we tested for similarity-based oscillatory responses using
representational similarity analysis (RSA) to compare similarity dis-
tances between MEG response patterns with similarity values derived
from physical and perceptual measures of high-level facial dimensions
and categories (Su et al., 2012). To this end, we developed “physical
similarity spaces” by extracting configurations of facial form and
patterns of facial motion from videos of dynamic facial expressions.
We also developed “perceptual similarity spaces”, based on partici-
pants’ similarity judgments of facial form and motion. Lastly, “catego-
rical similarity spaces” were based on the between- versus within-
category structure for identity and emotional expression. Using these
spaces, we were able to behaviorally test for inter-relationships
between physical and perceptual measures of facial similarity and
whether they contain information about facial identities and emotional
expressions. Our main aim, however, was to establish whether any of
these similarity spaces was manifested by induced oscillatory MEG
responses, as measured at the sensor-level. As a basis for further
comparison, we also tested whether time-domain evoked response
similarity corresponded to physical perceptual or categorical face
spaces. We therefore could determine whether any facial encoding we
found for induced responses was also present in evoked signals. Lastly,
as a supplemental analysis, we optimized a source reconstruction to
localize our sensor space RSA effects within the aforementioned, well-
studied face perception network. We acquired fMRI functional localizer
data in the same participants as those who underwent behavioral and
MEG testing and exploited the superior spatial resolution of fMRI to
constrain our source solution. This multimodal dataset of physical data
extracted from video, behavioral data, evoked and induced sensor-level
MEG responses and fMRI-guided source localizations provided us with
a rich set of measures to fully explore several novel tests about
representations of facial similarity spaces.

Methods and materials

Participants

Twenty participants ( > 18 years) were scanned using fMRI. Of
these, two did not return for the behavioral experiment, one additional
participant did not return for MEG, and behavioral data for one more
participant were lost due to technical issues. Analyses proceeded with
the sixteen participants who possessed the full complement of data. All
participants were right-handed, had normal or corrected-to-normal

vision and reported no history of psychiatric or neurological disorder.
The local Cambridge, UK ethics committee granted approval.

fMRI procedures and analysis

Structural scans were obtained to facilitate data registration during
MEG source reconstruction. The results of fMRI localizer scans were
also used to constrain source solutions to fMRI-defined functional
regions of interest (ROIs). fMRI scans were collected using a 3 T
Siemens Tim Trio MRI scanner with 32 channel head coil. Functional
scans included whole-brain T2*-weighted echo-planar volumes with 64
× 64 matrix and 3 mm2 resolution in-plane and 3.75 mm thick axial
slices, TR 2 s, TE 30 ms, flip angle 78°. Structural scans were T1-
weighted MPRAGE with 1 mm3 voxels. The two localizer runs (175
volumes) were separated by runs related to a different experiment on
faces, not reported here. The localizer procedures were adapted from
Furl et al. (2013, 2015). The experiment was controlled using E-Prime
(Psychology Software Tools, Pittsburgh, PA). In each run, participants
viewed four types of block, each containing grayscale presentations of a
stimulus category: dynamic faces, dynamic objects or static versions of
the same faces or objects (taken from the last frame of each video).
There were six blocks of each block type per run and block order was
pseudo-random. Each block comprised eight presentations of 1375 ms
stimuli and a 1 s inter-block interval. Each participant fixated on a
white dot overlaid on the center of each presentation and pressed a
button-box key with the right index finger when the dot turned red on a
pseudo-random one-third of stimulus presentations. Four male and
four female facial identities, exhibiting transitions from neutral to
disgust, fearful, happy and sad expressions were taken from the
Amsterdam Dynamic Face Expression Set (ADFES) (Van der Schalk
et al., 2011). Face blocks comprised eight identities and four randomly-
selected expressions, with each expression appearing twice. Object
blocks included eight objects, previous used in functional localizers
(Fox et al., 2009; Furl et al., 2013, 2015). Dynamic object videos
included various plants blowing in the wind, a spinning globe, a
spinning ceiling fan, a burning flame, operating machinery and a
running tap.

fMRI data were preprocessed and analyzed using SPM12
(Wellcome Trust Center for Neuroimaging, London http://www.fil.
ion.ucl.ac.uk/spm/) and MATLAB (The Mathworks, Natick, MA, USA).
Data were motion-corrected, spatially-normalized to an EPI template
in MNI space, and smoothed to 8 mm FWHM. At a first level of
analysis, we estimated within-participant effects using an AR(1)
corrected general linear model with a 128 ms high pass filter. Four
regressors were added by convolving onset times and durations for
dynamic faces, static faces, dynamic objects and static objects with a
canonical hemodynamic response function. Regressors were also added
for head motion parameters. We tested contrasts of the block types at a
second level, where a group analysis was conducted to identify
locations in MNI space of occipitotemporal areas associated with
form and motion representations of dynamic faces (Haxby et al.,
2001; Furl et al., 2015). We localized face-selective areas: bilateral
occipital face area (OFA), bilateral fusiform face area (FFA) and right
superior temporal sulcus (STS) (defined by contrasting face blocks >
object blocks) and motion-sensitive areas: right and left V5 (defined by
contrasting dynamic blocks > static blocks). For ROI definition, we
identified the coordinates of the peaks of clusters observed at P < 0.
001 uncorrected that achieved family-wise error correction at the voxel
level using random-field theory (Brett et al., 2003).

Behavioral procedures

The behavioral experiment was conducted using PsychoPy (Peirce,
2009) in a separate testing session either immediately following fMRI
or within two weeks. Participants viewed the 630 possible unique
pairings of 36 dynamic faces. The 36 faces were taken from the BU-
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