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A B S T R A C T

Recent studies have suggested that human brain functional networks are topologically organized into
functionally specialized but inter-connected modules to facilitate efficient information processing and highly
flexible cognitive function. However, these studies have mainly focused on group-level network modularity
analyses using “static” functional connectivity approaches. How these extraordinary modular brain structures
vary across individuals and spontaneously reconfigure over time remain largely unknown. Here, we employed
multiband resting-state functional MRI data (N=105) from the Human Connectome Project and a graph-based
modularity analysis to systematically investigate individual variability and dynamic properties in modular brain
networks. We showed that the modular structures of brain networks dramatically vary across individuals, with
higher modular variability primarily in the association cortex (e.g., fronto-parietal and attention systems) and
lower variability in the primary systems. Moreover, brain regions spontaneously changed their module
affiliations on a temporal scale of seconds, which cannot be simply attributable to head motion and sampling
error. Interestingly, the spatial pattern of intra-subject dynamic modular variability largely overlapped with that
of inter-subject modular variability, both of which were highly reproducible across repeated scanning sessions.
Finally, the regions with remarkable individual/temporal modular variability were closely associated with
network connectors and the number of cognitive components, suggesting a potential contribution to
information integration and flexible cognitive function. Collectively, our findings highlight individual modular
variability and the notable dynamic characteristics in large-scale brain networks, which enhance our under-
standing of the neural substrates underlying individual differences in a variety of cognition and behaviors.

Introduction

Modularity (i.e., the decomposability of a system into small
modules) is a ubiquitous organization principle in most complex
systems, including social, economic and biological networks
(Hartwell et al., 1999). Using human resting-state functional MRI
(R-fMRI) that can capture the brain's intrinsic or spontaneous activity
(Biswal et al., 1995), recent studies have demonstrated that the human
brain functional network during rest is organized into several func-
tionally specialized but interconnected modules, such as the sensor-
imotor, visual, default-mode, fronto-parietal and attention modules
(He et al., 2009; Meunier et al., 2009; Power et al., 2011). This
intrinsically cohesive modular structure, which is presumably shaped
by evolutionary constraints, allows the brain to enable efficient
information communication with low wiring costs (Bullmore and

Sporns, 2012) and fast adaption to changeable task demands (Bassett
et al., 2011; Braun et al., 2015; Liang et al., 2016), and serves as a
fundamental network basis for cognitive flexibility (Bertolero et al.,
2015). Recent studies found that these brain modules exhibit distinct
cerebral blood flow rates (Liang et al., 2013) and are closely associated
with the correlated gene expression (Richiardi et al., 2015), further
suggesting underlying physiological and molecular mechanisms.
Notably, two important questions remain to be further elucidated,
despite greatly growing interests in investigating the intrinsic network
modules in the resting human brain.

The first question concerns individual differences in the functional
modular brain architecture during rest. Human brain structure and
function greatly vary across individuals. For example, structural brain
imaging and histology studies show remarkable structural variability in
language areas in either the regional cytoarchitecture (Amunts et al.,
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1999;Amunts et al., 2004;Eickhoff et al., 2005) or cortical morphology
(Hill et al., 2010a). Functional brain imaging studies based on task-
and R-fMRI reveal substantial functional variability in the association
cortex (e.g., lateral frontal areas) in either task-evoked activations
(Frost and Goebel, 2012;Pinel et al., 2007), intrinsic functional
connectivity (Finn et al., 2015;Mueller et al., 2013), cortical parcella-
tions (Langs et al., 2016;Wang et al., 2015a) or functional systems
(Gordon et al., 2015). These structural and functional variations may
origin from the joint effects of genetic and environmental factors (Brun
et al., 2009;Chen et al., 2012;Gao et al., 2014;Hill et al.,
2010b;Johnson et al., 2009;Petanjek et al., 2011) and have greatly
advanced our understanding of the neural substrates of individual
differences in cognition and behavior. Quantifying the inter-subject
variability in the intrinsic modular organization would provide system-
level insights. Until recently, only two R-fMRI studies directly exam-
ined individual differences in the functional modular architecture, with
a primary focus on the consistent network modules across individuals
(Moussa et al., 2012) or the deviation of individual modular structures
from the group-level organization (Laumann et al., 2015). However,
how the intrinsic modular brain architecture, especially the constitu-
tion of functional modules, varies across individuals remains largely
unknown.

The second question concerns the time-varying dynamics of
modular architecture in the brain functional networks. Recent task-
related fMRI studies demonstrated that the dynamic reconfiguration of
the functional modular structure in response to task demands are
associated with individual performances in motor skill learning
(Bassett et al., 2011) and working memory tasks (Braun et al., 2015).
Existing literature has suggested that both the dynamic functional
architecture during tasks and the individual behavioral performances
can be shaped by the intrinsic brain networks during rest (Cole et al.,
2014;Sadaghiani et al., 2015;Schultz and Cole, 2016;Wang et al.,
2016). Hence, exploring the time-varying characteristics of intrinsic
modular organization may provide fundamental insights into flexible
cognitive functions (Anderson, 2014;Pessoa, 2014). Several R-fMRI
studies demonstrated that during the resting state, the functional
modular architecture, such as network modularity and the connectivity
strength associated with the modules, temporally changes on a short
time scale (e.g., seconds) (Allen et al., 2014;Betzel et al., 2016;Di and
Biswal, 2015;Jones et al., 2012;Schaefer et al., 2014). However, how
the brain regions dynamically switch their module affiliations over time
and the functional implications remain to be elucidated.

To address these issues, in the present study we employed multi-
band R-fMRI data and a graph-based modularity analysis to system-
atically explore the individual variability and the time-varying char-
acteristics of the intrinsic modular architectures in the human brain.
Specifically, for each subject, we constructed large-scale static and
sliding window-based dynamic functional networks and tracked the
modular architectures across subjects or time. Given that higher-order
cognitive functions primarily involving association areas (e.g., fronto-
parietal areas) (Yeo et al., 2015) exhibit remarkable individual differ-
ences, we hypothesized that the association regions would show large
inter- and/or intra-subject modular variability. We further investigated
whether the subject-specific functional modular architecture and the
temporal characteristics were reproducible across repeated scanning
sessions. Finally, we examined the associations between inter-/intra-
subject modular variability and the functional connectors and cognitive
flexibility (Yeo et al., 2015).

Materials and methods

Subjects and data acquisition

Multiband resting-state fMRI (R-fMRI) data were acquired from
the publicly available Q2 Data Release of the Human Connectome
Project (HCP) (Van Essen et al., 2013). The data set included 142

healthy subjects, of which 132 subjects underwent repeated R-fMRI
scanning in two sessions (Table S1). Written informed content was
obtained from each subject, and the scanning protocol was approved by
the Institutional Review Board of Washington University in St. Louis,
MO, USA (IRB #20120436).

All subjects underwent multimodal imaging scans in a customized
32-channel Siemens 3T “Connectome Skyra” scanner at Washington
University. For each subject, four R-fMRI runs were collected in two
sessions, with two runs separately acquired per session through phase
encoding in the left-to-right and right-to-left directions. Specifically,
each R-fMRI run was acquired using a multiband gradient-echo-planar
imaging sequence as follows: time repetition=720 ms; time
echo=33.1 ms; flip angle=52°; field of view=208×180 mm2; ma-
trix=104×90; 72 slices; voxel size=2×2×2 mm3; multiband factor=8
and 1200 volumes (i.e., 14.4 min). During the scanning, the subjects
maintained a relaxed fixation on a cross. Notably, the R-fMRI data
from 27 subjects were excluded from the analysis due to missing time
points (N=3) or excessive head motion (N=24) (see “Data preproces-
sing”) (Table S1). The data from the remaining 105 subjects (age 22–
35 years, 37 males) were used for the final analysis. In the present
study, the R-fMRI data from the first session (i.e., S1) were used for the
main analysis and the data from the second session (i.e., S2) were used
for the validation and reproducibility analysis unless otherwise in-
dicated. To reduce the potential influence of different phase encoding
directions, only the left-to-right encoded runs are included here.

Data preprocessing

We obtained minimally preprocessed R-fMRI data conducted using
HCP Functional Pipeline v2.0 (Glasser et al., 2013) involving gradient
distortion correction, head motion correction, image distortion correc-
tion and spatial transformation to the Montreal Neurological Institute
space using one step spline resampling from the original functional
images followed by then intensity normalization. Notably, functional
data from 24 subjects were discarded due to their large head motions in
either run with criteria of a translation/rotation > 3 mm/° or a mean
framewise head motion > 0.14 mm (Finn et al., 2015). The framewise
head motion parameters were extracted from ‘relativeRMS_mean.txt’
in the Q2 release. In this study, these minimally preprocessed images
were further analyzed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm)
and DPARSF (Yan and Zang, 2010). Briefly, first the linear trend was
removed from these functional images. Then, several nuisance signals
were regressed from the time course of each voxel using multiple linear
regression, including twenty-four head motion parameters (Friston
et al., 1996), cerebrospinal fluid, white matter and global brain signals
(Birn et al., 2006;Fox et al., 2009). Finally, temporal band-pass filtering
(0.01–0.1 Hz) was performed to reduce the influence of low-frequency
drifts and the high-frequency physiological noises (Biswal et al.,
1995;Lowe et al., 1998). The resulting time courses were used for the
brain network construction and analysis.

Construction of functional brain networks

The brain network construction was implemented with GRETNA
(http://www.nitrc.org/projects/gretna/) (Wang et al., 2015b). In this
study, we constructed the whole-brain functional networks at the
macroscopic level, in which nodes represented regions of interest
(ROIs) and edges represented inter-regional functional connectivity.
Specifically, we employed a functionally defined atlas (Power et al.,
2011) to generate 264 nodal ROIs, each of which denoted 5-mm radius
spheres centered on previously reported coordinates. This atlas ensures
the functional significance of the brain network nodes and
simultaneously reduces the chance of signal blurring from multiple
functional areas within a node (Wig et al., 2011). It has been widely
used in both resting- and task-state brain network studies (Cole et al.,
2014; Cole et al., 2013; Gu et al., 2015; Power et al., 2013; Sadaghiani

X. Liao et al. NeuroImage 152 (2017) 94–107

95

http://www.fil.ion.ucl.ac.uk/spm
http://www.nitrc.org/projects/gretna/


Download English Version:

https://daneshyari.com/en/article/5631179

Download Persian Version:

https://daneshyari.com/article/5631179

Daneshyari.com

https://daneshyari.com/en/article/5631179
https://daneshyari.com/article/5631179
https://daneshyari.com

