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We developed a prediction model based on the evolutionary causal matrices (ECM) and the Markov Chain to
predict long-term influences of educational interventions on adolescents’ development. Particularly, we created
a computational model predicting longitudinal influences of different types of stories of moral exemplars on
adolescents’ voluntary service participation. We tested whether the developed prediction model can properly
predict a long-term longitudinal trend of change in voluntary service participation rate by comparing prediction
results and surveyed data. Furthermore, we examined which type of intervention would most effectively

promote service engagement and what is the minimum required frequency of intervention to produce a large
effect. We discussed the implications of the developed prediction model in educational interventions based on

educational neuroscience.

1. Introduction

Yoda: It is the future you see.

Luke: The future? Will they die?

Yoda: Difficult to see. Always in motion is the future.
- Star Wars: Episode V - The Empire Strikes Back

Psychological intervention experiments in educational settings have
been conducted to examine how to enhance positive youth develop-
ment, such as academic adjustment and well-being, among adolescents
[1]. Recently, psychologists have developed various intervention meth-
ods and tested their longitudinal influences on diverse domains,
including but not limited to, adolescents’ academic motivation, belong-
ingness to school contexts and social competences to deal with bullying
issues in school settings [2—5]. These intervention studies potentially
contribute to the improvement of school environment and finally
adolescents’ development based on empirical evidence [6,7].
However, because they have tested effects of interventions in experi-
mental settings, which are decontextualized, more restricted, con-
trolled and involve a smaller sample compared to real school settings,
it would be difficult to directly apply developed interventions to
classroom contexts [8]. Thus, large-scale, long-term longitudinal
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studies examining diverse intervention methods adopted in school
curricular and activities should be conducted to overcome this short-
coming. For instance, researchers should investigate which type of
intervention can effectively promote developmental change and how
often it should be conducted in classrooms in order to produce a
significant and large effect. By answering these questions, educators
and educational policy makers can better understand how to properly
apply psychological interventions to enhance the quality of education
in real school settings at the macroscopic level, such as the district
level. However, it would be difficult to test the long-term effects of
different types and frequencies of interventions with real adolescent
populations due to limited time and resources [9].

The meta-analysis is perhaps a feasible and reliable way to examine
which intervention methods can properly work in general by system-
atically reviewing and analyzing various methods developed in multiple
studies [10]. Several scholars have conducted meta-analyses to system-
atically review the effectiveness of diverse educational interventions in
diverse contexts [6,8,11,12]. They have identified which types of
intervention programs can produce a significant effect on positive
youth development [13]. However, they were not able to provide
complete answers to questions that educators and policy makers may
raise. For instance, although those previous meta-analyses of inter-
ventions examined the effect size of each type of interventions, they

Received 20 May 2016; Received in revised form 16 November 2016; Accepted 18 November 2016

Available online 24 November 2016
2211-9493/ © 2016 Elsevier GmbH. All rights reserved.


http://www.sciencedirect.com/science/journal/22119493
http://www.elsevier.com/locate/tine
http://dx.doi.org/10.1016/j.tine.2016.11.003
http://dx.doi.org/10.1016/j.tine.2016.11.003
http://dx.doi.org/10.1016/j.tine.2016.11.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tine.2016.11.003&domain=pdf

H. Han et al.

could not provide any information needed to determine the minimum
frequency of interventions required to produce a significant and large
effect. Moreover, the majority of previous meta-analysis studies were
mainly interested in demonstrating whether or not a certain type of
intervention can produce a significant effect overall [6,12], instead of
more directly examining which type of intervention can be more
effective than others. Thus, meta-analysis itself would not be sufficient
to provide practical implications to educators and policy makers.

We intend to employ the framework of evolutionary and computa-
tional theory and develop a computational model to examine which
type of intervention is effective and how often it should be conducted to
produce a significant and large effect in the long term. We predict
future long-term outcomes based on relatively small-scale, short-term
data gathered from lab and classroom experiments. Evolutionary
theory provides the present study with a theoretical scaffold to
approach the current problem, that is, the long-term prediction of
intervention outcomes, in a practical manner. Based on ideas in
evolutionary theory, particularly the evolutionary causal matrices
(ECM), we establish an evolutionary model modeling how a system
consisting of adolescents will evolve over time while being influenced
by interventions [14—16]. In order to implement the ECM-based
longitudinal prediction model, we employed Markov Chain analysis
[17]. Finally, we developed a simulation program based on the
computational model to test whether the model properly predicts
longitudinal outcomes.

In short, the present study aims to predict long-term outcomes of
educational interventions using relatively small-scale, short-term data
by applying the ideas of the ECM and Markov Chain. The developed
computational model will be able to provide useful insights about how
to apply intervention models to diverse educational settings to educa-
tors and policy makers. Furthermore, based on the developed compu-
tational model and prediction findings, the present study discusses
their implications for future educational intervention studies in educa-
tional psychology. Particularly, we focus on how this computational
approach can contribute to the improvement of interventions based on
an interdisciplinary theoretical framework incorporating perspectives
from neuroscience, cognitive science, and education.

1.1. Evolutionary causal matrices

The ECM that was inspired by the theory of biological evolution
provide useful tools to predict the ratio of a certain type of individuals
among the whole population and where the equilibrium point will be
under certain selection pressures in the long term, particularly for the
studies of cultural evolution [15]. ECM consist of multiple matrices
describing the dynamics in certain systems. Each matrix in ECM
describes the probability of the longitudinal transition between certain
states [16]. For instance, we may consider a simple illustrative example
of the longitudinal transition between conformers and non-conformers
in cultural systems. Conformers can be defined as a group of
individuals who conform to certain social norms; while, non-confor-
mers do not observe the norms. There are two different types of
systems, with different selection pressures. The first cultural system
(Cy) is well organized and has plentiful resources available to indivi-
duals. In this system, conformers are more likely to have better fitness
compared to non-conformers, and non-conformers are likely to follow
the social norms over time. The second cultural system (C>) does not
have enough resources to support individuals and is not well organized.
Non-conformers are more likely to be successful in this system. ECM
describing the transition between two states from t to t+1 are presented
in Table 1. We can calculate the ratio of each state in the C; at t+1 from
data at t as follows:

80% of initial conformers will still be conformers while 20% of them
will become non-conformers at t+1.
60% of initial non-conformers will still be non-conformers while
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Table 1
Sample ECM for two different hypothetical cultural systems.

Non-
conformers ()

Conformers (t)

Cultural system 1 (Well ~ Conformers (t .80 (ECM [1]) .60 (ECM [1,2])

organized, enough +1)
resources) Non-conformers .20 (ECM [1,2]) .40 (ECM [1,2])
(t+1)

Cultural system 2 (Not Conformers (t .30 (ECM [1,2]) .10 (ECM [1,2])

organized, not +1)
enough resources) Non-conformers .70 (ECM [1,2]) .90 (ECM
(t+1) (2,2,2])

40% of them will become conformers at t+1.

The ratio can also be calculated in case of the C- similarly. In
general, we can calculate the ratio of state A in the whole population at
t+1 using this formula [14,15]:

Yiep FOECMy

ZiEP [E (t) Ziep ECMJ]

Fat+1)=

1)

We can show that those two systems eventually reach a certain
equilibrium in the long term using the ECM and the formula. For
instance, let's say there are 50% of conformers and 50% of non-
conformers in both the C; and C» at t=0. After conducting iterative
calculations, both systems reach an equilibrium. On the one hand, in
case of the Cy, the ratio of conformers to non-conformers converges to
75:25 at t=10. On the other hand, that ratio converges to 87.5:12.5 at
t=10 in the case of the C».

This methodology can also be applied to predicting outcomes of
interventions in groups, which can be regarded as systems.
Interventions change the dynamics in a certain system and finally each
state. Previous intervention studies have demonstrated that interven-
tions altered group norms, influenced the dynamics within as well as
between individuals in the group, and finally changed the individuals’
behavior [18—-20]. Therefore, we can create ECM based on findings
from intervention experiments informing longitudinal changes be-
tween various behavioral states. One matrix is created per intervention
type. In each matrix, a number in each cell is calculated by the
transition rate from a certain state, which can be represented by a
different type of behavior, at ¢ to another or same state at t+1. Using
the created ECM, future intervention outcomes can be predicted by
iteratively calculating the ratio of each state among the whole popula-
tion at a certain time point.

1.2. Markov Chain

Markov chain is a mathematical tool, which can be used to model
and analyze stochastic systems [17]. It has been widely used in a wide
range of fields in science and engineering. One of the most famous,
recent successes of Markov chain is Google's PageRank [21]: modeling
behavior of web surfers as a Markov chain, Google's PageRank
efficiently ranks an enormous number of web pages on the Internet
based on search metrics.

We provide a formal definition of Markov chains as follows. A
Markov chain is defined with a set of states, transition matrix, and
initial state distribution; in this work, we consider only discrete time
Markov chains. At r = 0, the state of a Markov chain is in its initial,
denoted by S, and this initial state is randomly chosen according to the
initial state distribution. The transition matrix dictates how a Markov
chain (randomly) evolves. When the number of states is p, the size of
the transition matrix is p by p, and each row of the transition matrix
defines how the Markov chain evolves from each state. More precisely,



Download English Version:

https://daneshyari.com/en/article/5633691

Download Persian Version:

https://daneshyari.com/article/5633691

Daneshyari.com


https://daneshyari.com/en/article/5633691
https://daneshyari.com/article/5633691
https://daneshyari.com

