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a b s t r a c t

In this paper, we propose a strategy to combine fast discrete curvelet transform (FDCT) and

wave atom (WA) with multiscale variance stabilizing transform (MS-VST); our objective is to

develop algorithms for Poisson noise removal from images. Applying variance stabilizing

transform (VST) on a Poisson noisy image results in a nearly Gaussian distributed image. The

noise removal can be subsequently done assuming a Gaussian noise model. MS-VST has

been recently proposed in the literature (i) to improve the denoising performance of

Anscombe’s VST at low intensity regions of the image and (ii) to facilitate the use of

multiscale-multidirectional transforms like the curvelet transform for Poisson image

denoising. Since the MS-VST has been implemented in the space-domain, it is not clear

how it can be extended to FDCT and WA, which are incidentally implemented in the

frequency-domain. We propose a simple strategy to achieve this without increasing the

computational complexity. We also extend our approach to handle the recently developed

mirror-extended versions of FDCT and WA. We have carried out simulations to validate the

performance of the proposed approach. The results demonstrate that the MS-VST combined

with FDCT and WA are promising candidates for Poisson denoising.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

In several imaging modalities where image capturing
involves detection of particles such as photons, the
captured image may be modelled as a realization of a
two-dimensional (2-D) Poisson random process [1]. The
corresponding mathematical model is

x½m� � Poissonðl½m�Þ, ð1Þ

where x¼ fx½m�gm is the observed image, k¼ fl½m�gm is the
true image, and m is the index vector m¼ ½m1 m2�, with
mi ¼ 0;1, . . . ,N�1, for i¼1,2. The observed pixel values
fx½m�gm are conditionally independent. That is, given the
true image k, the pixel values of x follow independent
Poisson distribution. Prior to further processing, it is

necessary to denoise the observed image x by estimating
its true intensity profile k. In doing this, a major difficulty
arises in handling the hetroskedastic nature of noise: from
the noise model described in (1), it can be observed that the
parameter of the Poisson noise model l½m� (i.e., the noise
variance) depends on the spatial location m. Also, it is
straightforward to show that the signal-to-noise ratio (SNR)
of the Poisson noisy images is l½m� at location m.

A popular strategy for Poisson denoising is to transform
the noise model from Poisson to Gaussian by using a variance
stabilizing transform (VST). Precisely, the output of the VST
tends to be Gaussian distributed with a uniform variance (i.e.,
homoskedastic), as the image intensities approach infinity.
Thus, denoising can be performed in the Gaussian domain for
which several methods exist in the literature, and the final
estimate of the image may be obtained by inverting the VST.
The most popular examples for VST are Anscombe’s VST [2],
and the Haar–Fisz transform [3], which combines the Fisz
transform [4] with the Haar wavelet transform. In this paper,
we focus on Anscombe’s VST [2]. A major disadvantage of
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Anscombe’s VST is that its denoising performance is very
poor at low image intensities (i.e., when the SNR is very low)
[1,5]. In order to overcome this, a multiscale VST (MS-VST)
has been proposed recently [6]. The idea is to concatenate a
slightly modified VST after the lowpass filters associated with
multiscale transforms, e.g., wavelet transform. The lowpass
filter reduces part of the noise, thereby improving the SNR to
some extent before passing the image through VST. Further-
more, exploiting the sparsity offered by the multiscale trans-
forms in representing the intrinsic edges of most of the
images, very good denoising procedures may be developed,
e.g., hard-thresholding [7,8]. As a combined effect, the
MS-VST shows very good denoising capability, even at low
image intensities [6].

The MS-VST defined in [6] depends on the impulse
responses of the associated filters, and is implemented
exclusively in the space-domain. Since many of the multi-
scale-multidirectional transforms are implemented using
filter banks, the MS-VST may be easily incorporated into
any of them. Particularly in [6], MS-VST was implemented
using the undecimated wavelet transform (UWT), ridgelet
transform and the first generation curvelet transform
(CVT) [8]; among these, CVT shows the best denoising
performance [6]. However, there exist multiscale trans-
forms which are implemented in the Fourier domain by
applying frequency-domain windows corresponding to
each scale and, possibly, directions. Examples of such
transforms include the fast discrete curvelet transform
(FDCT) [9] and wave atom (WA) [10]. Though such trans-
forms possess an equivalent filter bank structure, it is not
clear how to extend the definition of MS-VST to the
Fourier domain. The difficulty here is twofold. Firstly,
MS-VST [6] is a nonlinear transform involving the
square-root function, and therefore, an equivalent opera-
tion in the Fourier domain is not straightforward to
implement. Secondly, the probability distribution of the
Fourier coefficients of a Poisson distributed image has
no closed form expression, and hence, the derivation of
MS-VST in the Fourier domain is difficult. However, since
the use of FDCT and WA have been shown to result in very
good denoising techniques [11–13], it is advantageous to
develop MS-VST for these transforms as well.

In this paper, we propose a simple and direct method
to combine MS-VST with FDCT and WA. We propose to
implement MS-VST in the space-domain using a general-
ized Laplacian pyramid (LP) [14], and combine this
structure with the existing FDCT and WA structures. The
design of the filters in LP depends on the transform with
which we intend to combine MS-VST. We also explain
how the proposed strategy can be used with the mirror-
extended FDCT (ME-FDCT) and mirror-extended WA (ME-
WA). A part of this work along with some preliminary
results were presented in [15].

1.1. Related work

Recently, it was observed in [16] that the poor denoising
performance of Anscombe’s VST at low image intensities is
due to the bias introduced by the function used to invert the
effect of the VST after Gaussian denoising. In order to over-
come this problem, an exact unbiased inverse function for

Anscombe’s VST (i.e., exact unbiased inverse VST or EU-IVST)
was proposed in [16]. Furthermore, it was shown in [16] that
the use of EU-IVST along with the recently proposed BM3D
algorithm [17] for Gaussian denoising would yield best
results. Apart from VST, there are methods which attempt
to solve the Poisson denoising problem directly, without
transforming the noise model to Gaussian. The most promi-
nent examples include platelet [18] and PURE-LET [19], and
the Bayesian methods proposed in [20–22]. More details on
these and other methods used for the Poisson denoising
problem can also be found in the review papers such as
[1,23,24].

1.2. Organization of the paper

The paper is organized as follows. We start by briefly
discussing the MS-VST combined with a generalized LP
filter bank in Section 2. In Section 3, we propose a
structure to combine MS-VST with FDCT. We discuss
how a similar structure can be designed for WA in
Section 4. Then we extend the proposed scheme to the
ME-FDCT and ME-WA in Section 5. To illustrate the
denoising performance of the proposed MS-VST struc-
tures, we use the same denoising procedure proposed in
[6], which we briefly outline in Section 6. We have carried
out extensive simulations to validate the denoising per-
formance of the proposed methods. The results are dis-
cussed in detail in Section 7. Finally, we conclude the
paper in Section 8.

2. Multiscale variance stabilizing transform (MS-VST)

In this section, we briefly explain the MS-VST scheme
proposed in [6]. For the sake of the subsequent discus-
sions, we use a generalized oversampled LP filter bank
shown in Fig. 1. In Fig. 1, hj and gj, respectively, are the
2-D lowpass and highpass filters in the j-th level of the
filter bank, and the block Tjð�Þ performs the MS-VST
operation defined in [6], i.e.,

TjðajÞ ¼ bj sgnðajþcjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ajþcj9

q
, ð2Þ

where the symbol sgnð�Þ represents the signum function.
Furthermore, the constants bj and cj are defined as

bj ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9tð1Þj 9=tð2Þj

q
, cj ¼

7tð2Þj

8tð1Þj

�
tð3Þj

2tð2Þj

, ð3Þ

where tðkÞj ¼
P

mðhj½m�Þ
k. Then, the outputs of each low-

pass filter and highpass filter in Fig. 1 are given, respec-
tively, by

aj ¼ hjnx ð4Þ

and

dj ¼ gjnTjðajÞ, ð5Þ

where n stands for the linear convolution operation.
We conclude this section by stating Theorem 2 from

[6], slightly modified for the LP structure given in Fig. 1.
Assume that the input image x is Poisson distributed
with parameters k as in (1). Theorem 1 given below
states that the output dj of the highpass filter gj in Fig. 1
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