
Digital Signal Processing 53 (2016) 1–10

Contents lists available at ScienceDirect

Digital Signal Processing

www.elsevier.com/locate/dsp

Chain code compression using string transformation techniques

Borut Žalik, Domen Mongus, Krista Rizman Žalik, Niko Lukač ∗

University of Maribor, Faculty of Electrical Engineering and Computer Science, Smetanova 17, SI-2000 Maribor, Slovenia

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 17 March 2016

Keywords:
Chain codes
Lossless compression
Burrows–Wheeler transform
Move-to-front transform

This paper considers the suitability of string transformation techniques for lossless chain codes’
compression. The more popular chain codes are compressed including the Freeman chain code in
four and eight directions, the vertex chain code, the three orthogonal chain code, and the normalised
directional chain code. A testing environment consisting of the constant 0-symbol Run-Length Encoding
(RLEL

0), Move-To-Front Transformation (MTFT), and Burrows–Wheeler Transform (BWT) is proposed in
order to develop a more suitable configuration of these techniques for each type of the considered chain
code. Finally, a simple yet efficient entropy coding is proposed consisting of MTFT, followed by the chain
code symbols’ binarisation and the run-length encoding. PAQ8L compressor is also an option that can be
considered in the final compression stage. Comparisons were done between the state-of-the-art including
the Universal Chain Code Compression algorithm, Move-To-Front based algorithm, and an algorithm,
based on the Markov model. Interesting conclusions were obtained from the experiments: the sequential
uses of MTFT, RLEL

0, and BWT are reasonable only in the cases of shorter chain codes’ alphabets as with
the vertex chain code and the three orthogonal chain code. For the remaining chain codes, BWT alone
provided the best results. The experiments confirm that the proposed approach is comparable against
other lossless chain code compression methods, while in total achieving higher compression rates.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Efficient representation of information has remained a chal-
lenge since the earliest days of computing. During those times,
Freeman [1] invented a method (known as a chain code) for rep-
resenting the borders of rasterised geometric shapes. Since then
the chain codes have become the popular representation methods
within various scientific and engineering disciplines [2–11].

The chain code consists of a small number of instructions,
which determine the boundary of a rasterised shape. The original
Freeman chain code (in the continuation denoted as F8) contains
8 symbols describing a pixel’s neighbourhood with 8-connectivity.
This connectivity is coded with 8 codes from the alphabet �F 8 =
{0, 1, 2, 3, 4, 5, 6, 7}. Also a pixel’s 4-connectivity neighbourhood
can be used leading to the Freeman chain code in four direc-
tions (F4) having the alphabet �F 4 = {0, 1, 2, 3}. Instead of pixels,
the sequence of boundary edges can be described as proposed by
Nunes et al. [12]. The alphabet of their Differential Chain Code
(DCC) contains only three elements, �DCC = {R, L, S}, where R, L,
and S stand for right, left, and straight, respectively. Another chain

* Corresponding author. Fax: +386 2 220 7272.
E-mail address: niko.lukac@um.si (N. Lukač).
URL: http://gemma.feri.um.si/ (N. Lukač).

code with only three symbols in the alphabet, �VCC = {1, 2, 3}, is
the Vertex Chain Code (VCC) proposed by Bribiesca [13]. The ele-
ments of VCC represent the number of a shape’s boundary pixels
meeting within the considered raster vertex. In 2005 Sánchez-
Cruz and Rodríguez-Dagnino [14] introduced another three-symbol
chain code known as the Three OrThogonal (3OT) chain code with
alphabet �3OT = {0, 1, 2}. Its codes are determined as follows:

• if the current coding direction is the same as the coding direc-
tion of its predecessor, the code is 0;

• if the current coding direction is equal to its first predecessor
coding direction, which is different than the direction of its
predecessor, the code is 1;

• otherwise the code is 2.

Graphical representations of the chain codes can be found at
many places in the literature (e.g. [15–17]). Although chain codes
provide compact representations of shapes’ boundaries, some re-
dundancies still remain. This is the reason for developing the
domain-specific chain code compression methods. In 1997 Nunes
et al. proposed a near-lossless method with Huffman codes on
their differential chain code DCC [12]. Liu and Žalik [15] derived
the Directional Difference Chain Code (DDCC) by encoding the an-
gular differences of F8 by Huffman codes. A few years later, Liu
et al. [16] proposed three simple compression methods for VCC:

http://dx.doi.org/10.1016/j.dsp.2016.03.002
1051-2004/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.dsp.2016.03.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/dsp
mailto:niko.lukac@um.si
http://gemma.feri.um.si/
http://dx.doi.org/10.1016/j.dsp.2016.03.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dsp.2016.03.002&domain=pdf

2 B. Žalik et al. / Digital Signal Processing 53 (2016) 1–10

E_VCC (Extended VCC), V_VCC (Variable VCC), and C_VCC (Com-
pressible VCC). In order to achieve a more compact code, a modi-
fied (M_3OT) chain code was proposed by Sánchez-Cruz et al. [18].
They introduced additional symbols 3, 4, and 5 to encode frequent
combinations of 3OT symbols 0 and 1. Instead of static Huffman
codes, arithmetic coding was later applied for 3OT and DDCC [19].
However, the arithmetic coding as a part of chain code compres-
sion was firstly introduced in 2007 [20]. A context tree for describ-
ing the Freeman chain codes’ context model followed by arithmetic
coding had been proposed in [21] for compressing contour lines. In
this case the geometric shapes are not necessarily closed. One of
the more efficient methods was proposed by Alcaraz-Corona and
Rodríguez-Dagnino [22]. Actually, the method was designed for
bi-level image compression. At first, image objects are described
by the chain codes. After that the symbol dependences are deter-
mined in order to calculate the conditional probability of a Markov
model. The selection between various Markov orders is done by
Bayesian information criterion – BIC. Finally, the Markov order
with the minimal BIC is selected and used by the arithmetic coder.
However, the number of probability combinations in the Markov
model grows exponentially, which is computationally demanding,
and even more importantly, it requires memory space to store
the information about the used symbol dependences’ probabilities.
This is why the authors use a small Markov order (i.e. up to 5).
A quasi-lossless chain code compression method was proposed in
[23], where the less frequent angular differences (i.e. 135◦ and
180◦) in the DDCC were replaced by the more frequent ones. Žalik
and Lukač [17] developed a new lossless chain code compression
approach for the more popular chain codes (F8, F4, VCC, 3OT, and
NAD – a normalisation of DDC). In order to reduce the information
entropy, the Move-To-Front transform was applied followed by the
adaptive RLE. Very recently a Universal Chain Code Compression
(UCCC) algorithm has been proposed in [24]. The chain codes have
been binarised and then compressed, regardless of the chain code
type, by a combination of three modes: RLE, LZ77 and COPY. The
equivalence between the chain codes was formally proven in [25].
The chain codes can also be used in 3D [26,27].

This paper introduces a new lossless chain code compression
approach, which combines different string transformation tech-
niques. A testing environment was set-up consisting of Move-To-
Front Transform (MTFT), constant 0-symbol Run-Length Encoding
(RLEL

0) (where runs of L 0-symbols are replaced by a new sym-
bol L), and Burrows–Wheeler Transform (BWT). In the next section,
these techniques are briefly explained. In Section 3 the structure of
the testing environment is given together with the entropy coder.
Section 4 contains the conducted experiments using 24 bench-
mark shapes, where the comparisons were performed using var-
ious lossless chain code algorithms. The last section concludes the
paper.

2. String transformation methods

This section briefly introduces the string transformation tech-
niques used in this paper: Move-To-Front Transform (MTFT),
Burrows–Wheeler Transform (BWT), and two variations of the Run-
Length Encoding (RLE).

2.1. Move-to-front transform

MTFT [28,29] is a technique originally developed for memory
paging and more efficient access to the elements of a list [30,
31]. The elements, which have been accessed recently are located
nearer to the top of the list. In data compression, MTFT is fre-
quently used during the pre-processing stage, as it may reduce the
information entropy [17]. Let �S = {σ0, σ1, . . . , σk−1} be the alpha-
bet consisting of k symbols, and S = {σi}, σi ∈ �S , i ∈ [0, n − 1] the

begin
Initialization; \\fill T with {σi} ∈ �

for i = 0 to n-1 do
begin

index = 0;
while T [index] �= σi do

index = index + 1;
O [i] =index; \\send index to output
for k = index to 1 do \\move all element upward

T[k] = T[k-1];
T[0] = σi ; \\current symbol is moved-to-front

endfor;
end;

Pseudo-code 1. Move-To-Front transform.

sequence of n = |S| input symbols. The list T contains an arrange-
ment of all σi ∈ �S .

MTFT incrementally takes symbol σi from S , finds its position
(index) within T , stores the index in the output array O , moves σi

to the first position in T and shift all others elements from T up
to index for one position (see Pseudo-code 1 for details).

Let us consider an example. �S = {a, b, c}, S = [c, a, a, a, a, a, a,

b, a, b, a, b, a] and T = [c, b, a]. Running MTFT results in O =
[0, 2, 0, 0, 0, 0, 0, 2, 1, 1, 1, 1, 1]. As can be seen, the sequence of
the same symbol results in runs of 0’s, whilst the sequence of al-
ternating symbols produces runs of 1’s.

In the next example, a less favourable case is shown: S = [c, a,

b, a, a, b, a, c, a, b, c, b, a] gives O = [0, 2, 2, 1, 0, 1, 1, 2, 1, 2, 2, 1, 2],
where runs of the same symbols do not exist. Such streams can be
rearranged in, hopefully, a more suitable form for compression by
the Burrows–Wheeler Transform, which is described next.

2.2. Burrows–Wheeler transform

Burrows–Wheeler Transform (BWT) is one of the more fascinat-
ing algorithms in computer science, being discovered in 1978 and
published in 1994 [32]. A detailed explanation with various appli-
cations can be found in [33,34]. BWT transforms the input string
S to the output string O such that symbols with a similar context
are grouped closely together. It works over three steps:

• generate n rows by left-shifting S n times;
• lexicographically sort the rows;
• read the characters from the last column, which represent

BWT.

The position of the initial string S should be stored in order
to reconstruct the input string S from BWT(S). A short example
follows, where S = [cabcabcd]:

stage 1: shifting stage 2: sorting stage 3: obtaining BWT

cabcabcd abcabcdc c
abcabcdc abcdcabc c
bcabcdca bcabcdca a
cabcdcab bcdcabca a
abcdcabc cabcabcd ← 4 d
bcdcabca cabcdcab b
cdcabcab cdcabcab b
dcabcabc dcabcabc c

BWT(S) = [ccaadbbc] and the BWT-index for the reconstruc-
tion is 4. As can be seen, after BWT the same character tends to
form runs and therefore, BWT(S) is more compressible. The proce-
dure for the inverse BWT can be found in the literature (e.g. [33]).
The main problem of BWT is its time complexity. A naive imple-

Download English Version:

https://daneshyari.com/en/article/564308

Download Persian Version:

https://daneshyari.com/article/564308

Daneshyari.com

https://daneshyari.com/en/article/564308
https://daneshyari.com/article/564308
https://daneshyari.com

