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Independence between detectors is normally assumed in order to simplify the algorithms and techniques 
used in decision fusion. In this paper, we derive the optimum fusion rule of N non-independent detectors 
in terms of the individual probabilities of detection and false alarm and defined dependence factors. This 
has interest for the implementation of the optimum detector, the incorporation of specific dependence 
models and for gaining insights into the implications of dependence. This later is illustrated with a 
detailed analysis of the two equally-operated non-independent detectors case. We show, for example, 
that not any dependence model is compatible with an arbitrary point of operation of the detectors, and 
that optimality of the counting rule is preserved in presence of dependence if the individual detectors are 
“good enough”. We have derived also the expressions of the probability of detection and false alarm after 
fusion of dependent detectors. Theoretical results are verified in a real data experiment with acoustic 
signals.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Fusion of detectors is a well-established issue, appearing in 
such related areas as sensor data fusion [1], multimodal fusion 
[2], mixture of experts [3] and classifier combiners [4]. Although 
frequently employing different terminologies and experiencing dis-
tinct implementation constraints, all of these areas share similar 
problems when considering the optimum design of fusion meth-
ods. Three different levels of fusion can be carried out: observa-
tion (in classification, “feature” is preferred) fusion, score fusion 
and decision fusion. In principle, observation fusion should be 
privileged, as it captures all the underlying statistical information 
about the problem. However, all the original observation compo-
nents might not be accessible at the fusion center. This occurs 
in sensor networks, where transmission bandwidth conservation 
and distributed processing lead to only individual decisions being 
transmitted to the fusion center. Moreover, even given simultane-
ous accessibility to all the observation components, the problem 
of estimating the multidimensional probability densities (MPD) re-
quired for optimum, likelihood-ratio-based observation fusion, re-
mains a complex one. This is especially the case when dealing 
with heterogeneous observations and/or statistical dependence be-
tween the observation vector components. Score fusion alleviates 
the problem of heterogeneity, as the scores afforded by each indi-
vidual detector include some type of normalization: the scores are 
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generally estimates of the a posteriori probability of every hypoth-
esis derived from an observation. But in areas such as biometrics, 
scoring normalization is required prior to fusion [5]. An additional 
advantage garnered from score fusion is that the number of com-
ponents to be fused is limited to the number of detectors. In any 
case, scores, like observations, are continuous variables that lend a 
significant degree of complexity to the task of estimating the un-
derlying MPD, and might not be available and could not be acces-
sible in distributed detection architectures. Consequently, decision 
fusion is the ideal choice when the observations or the scores are 
unavailable at the fusion center, and/or when MPD estimation is to 
be avoided or replaced by the (simpler) estimation of multidimen-
sional probability masses (MPM).

A great deal of effort has been dedicated over the past few 
decades to finding optimum fusion methods at the three different 
levels. Some of this research, mostly recent, has assumed the pres-
ence of statistical dependence, so factoring the corresponding and 
underlying MPD or MPM in unidimensional marginals is not possi-
ble. In [6], a copula-based approach is therefore presented to fuse 
heterogeneous observations. Copulas are useful in managing het-
erogeneity when dependence is present: the MPD is factorized in 
the marginals, thereby capturing the heterogeneity, and a multidi-
mensional copula (MPD of uniformly distributed variables derived 
from the original observation components) captures the depen-
dence. Copulas are also useful in defining a variety of dependence 
models. Reference [7] is representative of score fusion, where the 
authors use non-parametric estimates of the score MPD. Optimum 
fusion at the decision level requires knowing the MPM of deci-
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sions made by the individual detectors. This can be obtained by 
multidimensional integration of the MPD in limits defined by the 
individual thresholds. Thus in [8], a parametric copula model (with 
known or unknown parameters) is assumed for the MPD, then the 
corresponding MPM are derived. In [9], the work of [8] is extended 
to the case of “mis-specified” copulas and multibit quantizers. Op-
timum design of the individual detector rules, in conjunction with 
the optimum definition of the decision fusion rule when depen-
dence is present, have also been analyzed by several authors. In 
[10], for example, the two-sensor case is considered for the binary-
quantizer Gaussian shift-in-mean problem. Determining optimal 
individual rules requires an iterative algorithm, where only one 
rule is modified at a time while the others are assumed to be 
fixed. Conclusions are then derived about the convergence prop-
erties of the algorithm for possible two-sensor fusion rules (AND, 
OR, XOR). The authors in [11] find the general expression for an 
optimum individual rule, given the other rules; to avoid the iter-
ative, one-by-one search for optimal individual rules, the authors 
propose transforming the original observations to undo the sta-
tistical dependence and thereby render individual likelihood ratio 
tests optimal. Though ambitious in their quest for optimality, these 
works do present various drawbacks:

– It is generally assumed that the input of the individual de-
tector is only one of the components from the entire obser-
vation vector. While this may be a reasonable assumption in 
distributed detection, it is not usually the case in the afore-
mentioned related areas (see [12] for an example of fusion in 
the financial area), where highly dimensional patterns appear 
at the input of every individual detector.

– Different amounts of available information about the MPD of 
the observations are required or must be estimated. In [8]
and [9], for example, the marginals are assumed to be known, 
while the copulas are known or must be estimated. In [10], 
Gaussianity is assumed, while in [11], the proposed transfor-
mation depends on the specific statistical model considered 
and may not be feasible for arbitrary scenarios.

– The algorithms are complex and mostly iterative. Hence, ap-
plying these techniques is only justified if the observations 
are not simultaneous available at the fusion center—not as a 
means of avoiding use of the MPD.

– Thus, these techniques do not generally offer an intuitive and 
simple understanding of the implications of dependence for 
the optimality of the fusion center rules.

Simpler approaches are based on working directly with the 
MPM, or with equivalent representations of both the marginals 
and the dependence of the decisions. The optimum decision fu-
sion rule employing the MPM is well-known (see Section IV.A of 
[8] and [13]). Optimum fusion rules are also proposed in [14], 
employing correlation coefficients of decisions and probabilities of 
false alarm and detection for some specific correlation structures. 
Based on the results from [14,15] derives the optimal conditions 
for simple counting rules in the case of identical detectors, where 
every hypothesis is characterized by a constant correlation coeffi-
cient. Practical application of these methods requires estimating 
the MPM or equivalent representations. This estimation can be 
made from sample training records of synchronized decisions un-
der every hypothesis.

The work presented in this paper belongs to this class of ap-
proaches. Each individual detector will be characterized by its 
point of operation (probability of detection PD and probability of 
false alarm PFA). Dependence between decisions in every hypothe-
sis will be captured by a new defined parameters: dependence fac-
tors, DFs. These parameters are factors linking the marginal masses 
with the MPM in much the same way that the copula function 

links the marginals with the MPD, although by no means the DFs 
exhibit properties similar to those of copula functions [16]). We 
will obtain the optimum fusion rule in terms of the individuals 
PD and PFA and on the DFs. This facilitate the implementation of 
the optimum fused detector as the nature and complexity of every 
detector is thus of no concern, only its PD and PFA, and the DFs 
can be estimated from training records. Moreover, we will see that 
the optimum fusion rule in presence of dependence is an obvious 
extension of the optimum fusion rule of independent detectors. 
This makes possible a straightforward consideration of particular 
dependence models. It also allows gaining insights into the impli-
cations of dependence in different aspects such as optimality of 
the counting rule, detector performance or compatibility between 
the dependence model and the points of operation of the individ-
ual detectors.

The remainder of this paper is organized as follows. In Sec-
tion 2, it is derived the optimum fusion rule in terms of the in-
dividual PD and PFA, and the DFs. Then, Section 3 focus in the two 
equally-operated non-independent case; this particularization is a 
convenient assumption for mathematical tractability, and it does 
not inhibit deriving interesting conclusions about the influence of 
the statistical dependence in the decision fusion problem. Section 4
provides three representative examples to illustrate the theory and 
a real data application to verify the theoretical predictions, with 
conclusions discussed in Section 5.

2. Optimum fusion rule in terms of dependence factors

Let us consider the case of N detectors indexed by n = 1 . . . N . 
Every detector generates a binary decision un = 1, 0 and is charac-
terized by some particular probability of detection Pdn and prob-
ability of false alarm P f n . We define the vector of decisions u =
[u1 . . . uN ]T . The optimum fusion rule is given by [17]

�(u) = P H1(u)

P H0(u)

H1
≷
H0

t. (1)

Where P H j (u) is the MPM corresponding to hypothesis H j and t
is a threshold which determines the PD and PFA. �(u) is the like-
lihood ratio. In the following we are going to express the optimum 
fusion rule in terms of the individual PD and PFA of every detector 
and of some properly defined dependent factors.

Let us define also the truncated vector of decisions un =
[un . . . uN ]T , n = 1 . . . N , hence u1 ≡ u and uN ≡ uN . Using the 
probability chain rule, the MPM corresponding to the hypothesis 
H j may be expressed in the form

P H j (u) = P H j (u1 | u2)P H j (u2 | u3) . . . P H j (uN−1 | uN )P H j (uN)

= P H j (u1 | u2)

P H j (u1)

P H j (u2 | u3)

P H j (u2)
. . .

P H j (uN−1 | uN)

P H j (uN−1)

×
N∏

n=1

P H j (uN) = α j(u1 . . . uN)

N∏
n=1

P H j (uN). (2)

In this way, the MPM is factorized in the marginals and in a depen-
dence function α j(u1 . . . uN ) in a manner similar to that performed 
with a copula function [16]. Now, let the DFs under H j be defined 
by

β jn(un+1) = P H j (un = 1 | un+1)

P H j (un = 1)
, n = 1 . . . N − 1. (3)

Notice that

P H j (un = 0 | un+1)

P H j (un = 0)
= 1 − P H j (un = 1 | un+1)

1 − P H j (un = 1)
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