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This paper presents a method based on graph behaviour analysis for the evaluation of descriptor graphs
(applied to image/video datasets) for descriptor performance analysis and ranking. Starting from the
Erdős–Rényi model on uniform random graphs, the paper presents results of investigating random
geometric graph behaviour in relation with the appearance of the giant component as a basis for ranking
descriptors based on their clustering properties. We analyse the phase transition and the evolution of
components in such graphs, and based on their behaviour, the corresponding descriptors are compared,
ranked, and validated in retrieval tests. The goal is to build an evaluation framework where descriptors
can be analysed for automatic feature selection.
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1. Introduction

Content based retrieval in large video/image datasets is highly
dependent on the choice of discriminating features and effi-
cient index structures. Recent approaches involve graph clustering,
clique searching, and component analysis methods. Open issues re-
main how to build the graphs (selection of edges and weights), and
how to navigate them efficiently (neighbourhood search). We pro-
pose and work towards proving that graph theoretic approaches
can be useful in content based retrievals, for descriptor evaluation
and automatic feature selection. We build our approach on the
investigation of entity difference distributions according to sev-
eral descriptors and analysing their relations and behaviour during
component formulation and the appearance of the so called giant
component in the graphs of the descriptors. As we will detail later,
as the novelty of our approach, our goal is to exploit the inher-
ent properties of the graph representations to evaluate descriptors
based on the behaviour of their graphs during the formulation of
the giant component, analysing their discrimination capabilities.
The presented method has some connections to graph clustering
methods in the sense that the effects of the descriptors on the
structure of their graphs is related to their clustering properties.
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When searching for similar content in video/image datasets,
we need to apply feature extractors that gather information about
the content and structure of the stored data, and use that infor-
mation to create a searchable index for the dataset, which in turn
will be the basis of searching for similar content. However, there
are a lot of different descriptors, and usually it is very hard to se-
lect those, that perform well for a given dataset, when using them
to produce retrieval results. Our purpose is to help this process by
providing a means to evaluate a set of descriptors for a given set
of classes and data, and to find a combination of descriptors that
perform better. This information can then be used to create more
efficient indexes and produce higher precision retrievals.

Feature selection in the presence of irrelevant features (noise)
is presented in [1], taking into consideration sample data points
in 2D for boundary selection and investigating the distribution of
feature weights in high dimensions. A method for feature selec-
tion [2] is based on approximately 1000 features on real videos,
using heuristics for feature retention, using the sort-merge ap-
proach for selecting ranked feature groups. A method for sport
video feature selection is presented in [3]; Setia and Burkhardt
[4] present a method for automatic image annotation based on
a feature weighting scheme and machine learning; Guldogan and
Gabbouj [5], Li et al. [6] present similar approaches for feature
selection based on mutual information and principal component
analysis. Zhang et al. [7] presents a query by example approach
where histograms of point distances are investigated as a basis
to show that with increased dimensions the distance distributions
tend to be narrower (poor discrimination), and SIFT feature distri-
bution histograms are used to improve clustering and retrieval.
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Graphs are a natural way of representing data structures, de-
scribing interconnections and internal structures of datasets, visu-
alising relations and distances of elements, and finding subsets,
clusters and communities in such structures. Graphs have been
widely used for clustering applications, including spectral cluster-
ing [8] for graph partitioning, MST (minimum spanning tree) based
clustering [9], dense sub-graph mining [10], etc. The uses of graph
clustering approaches are various, from generic pattern recognition
(e.g., [11,12]), to the recently highly researched community detec-
tion approaches in graphs representing social structures [13–16].

Contrary to other approaches, we do not use artificial feature
weighting or a priori clustering, instead we use real data with mul-
tiple features and weigh the built graphs by the points’ differences
according to features, and investigate the behaviour of the distri-
butions. The goal is to show that this method is a good alternative
to previous ones for finding features with higher discriminative
properties. In our earlier work [17] we have proposed the use of
descriptor graphs for descriptor ranking, and we produced a fitness
function for providing such a rank [18]. This work extends these
previous results by deeper investigation of the properties of such
graph structures, regarding similarity in behaviour and topography,
and the use of such intrinsic properties for feature selection.

We will start by introducing basic concepts and random ge-
ometric graphs (Section 2), followed by the description of the
proposed parameters for ranking based on phase transition and
component behaviour of descriptor graphs (Section 3), then the
presentation of the used datasets and descriptors (Section 4), and
finally the presentation of the ranking function and the performed
evaluations (Section 5).

2. Component analysis of random graph models

In this section we overview the properties of two frequently ap-
plied random graph models and their component structures. Based
on the results corresponding to random graphs, we get a better
understanding of the properties of real-world graph structures. Let
us start with some definitions of important terminology.

Definition 1. An undirected graph is a G = (V , E) pair, where V
denotes the set of vertices (or nodes) and E denotes the set of
edges. E ⊆ V × V is a symmetric binary relation on V . The edges
represent connections between the vertices of the graph, ei j ∈ E
being an edge connecting vertices vi and v j .

Definition 2. The neighbourhood of a vertex v ∈ V is N(v) = {w :
(v, w) ∈ E}. The degree d(v) of a vertex v is the number of its
neighbours.

Definition 3. Graph G ′ = (V ′, E ′) is a sub-graph of G if V ′ ⊆ V ,
E ′ ⊆ E and if ei j ∈ E ′ then vi, v j ∈ V ′ .

Definition 4. If W : E �→ R is a weight function on G = (V , E), then
we say that the graph is weighted and a wij weight value corre-
sponds to an edge ei j .

Definition 5. A G = (V , E) graph is connected, if there is a path
between any two vertices. A path is a sequence of vertices in the
graph, where neighbouring vertices of the sequence are adjacent
in the graph, and a vertex appears only once in the sequence.

Definition 6. C is a component of G = (V , E), if C is a sub-graph of
G and it is connected. The size of a component is the number of
vertices it contains.

Definition 7. A random geometric graph (RGG) is obtained as fol-
lows. We pick n random node position values as X1, X2, ..., Xn ∈ R

d

(according to a probability distribution ν on R
d , where d is the

number of dimensions). We connect two nodes vi and v j (i �= j) if
their distance ‖Xi − X j‖ < rn , the radius of the graph.

The theory of random graphs has an important role in dis-
crete mathematics since the early 60’s. Besides the theoretically
interesting problems, random graphs have proven to be useful in
engineering applications as well. Although real-world datasets are
usually too complex to mimic each of their properties with syn-
thetic datasets, some important parameters of their structure can
be exposed by analysing random graphs. Famous examples are so-
cial networks [13,16] and web graph analysis [19,20].

The network parameters frequently modelled by random graphs
are: the probability of the existence of certain edges of the real
graph, the degree constraints, or – in case of weighted graphs –,
the weights’ distribution. After the model is built, some structural
patterns get revealed, such as the number or size of components,
cliques, or the occurrence of some special sub-graphs.

In our case, random graphs are used to analyse the number and
size of components in real graphs. We aim to compare graphs built
from test datasets based on a well known phenomenon in random
graphs, namely the appearance of the giant component (defined in
Section 2.1, Theorem 1). Our test results provide evidence of the
existence of a component in these graphs with similar behaviour
to the giant component (GC) in random graphs. Besides the prop-
erties of the GC in real graphs, we are also interested in the size
and number of the components as well.

2.1. The Erdős–Rényi model

Erdős and Rényi analysed the properties of random graphs with
uniformly distributed edges [21]. They considered the evolution of
components, while adding randomly selected edges to the graph.
The process starts with n vertices and 0 edges, and in each step
a randomly selected new edge is added, independently of the al-
ready chosen edges. After each step, the size and number of com-
ponents are studied. During the evolution of the graph, connected
components start to appear and, when reaching a critical point,
they merge into a so called giant component (GC).

The Erdős–Rényi model (ER-model) was originally described by
the number of vertices and edges at a given step of the evolu-
tion: G(n, e), where n denotes the number of vertices, and e is the
number of edges. Recent results connected to this problem are for-
mulated using the number of vertices and the p probability of the
existence of an edge G(n, p). If the edges are selected indepen-
dently, this formulation gives the same result (as the above (n, e)
description), and p is usually described as a function of the num-
ber of vertices: p = c/n, where c is a constant. A complete graph
with n vertices has n(n − 1)/2 edges, that is a G(n, p = 1/n) graph
(c = 1) corresponds to the ER-model with n/2 edges.

One of the most interesting results of Erdős and Rényi is a the-
orem [21] that can be formulated as follows:

Theorem 1 (Erdős–Rényi). The behaviour of the ER graph model can be
divided into three important phases, from the point of view of component
sizes (where the size of the largest component is denoted by Cmax):

1. c < 1: Cmax = O (ln n) (the graph contains only small components);
2. c = 1: Cmax = O (n2/3);
3. c > 1: Cmax = O (n) (the giant component appears), and all other

components have size O (ln n).

The results presented in [21] also deal with the complexity of
the components, but now we are interested in their sizes. The
important consequence of this theorem is that after a given num-
ber of edges, a unique giant component (GC) appears. Below this
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