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Optimization with respect to some energy measure such as compaction energy is a widely used criterion
for designing wavelet filter banks. The filter bank can be adapted to the signal that it is analyzing to
achieve good performance. The frequency selectivity property of a traditional low-pass filter is however
not ensured using this criterion. Frequency selectivity is important to ensure the effects on aliasing
is minimized in the subband and to give a regular equivalent wavelet function. In this work the
design of energy optimized filters with a prescribed sharpness in the frequency response is presented.
The sharpness, which determines the degree of selectivity, is achieved by the zero-pinning technique
on the Bernstein polynomial. The design technique can be cast as a Semidefinite Programming (SDP)
problem which can be solved with efficient interior point algorithms.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The Discrete-Wavelet-Transform (DWT) is an indispensable tool
in many applications requiring the processing of numerical data
[1–3]. The power of the DWT lies in its ability to give a versatile
multiresolution decomposition of the data it is analyzing [4,5]. The
DWT is related to a two-channel multirate filter bank and is imple-
mented using a tree-structured cascade of the basic two-channel
system [6,7]. Wavelet and filter bank theories provide different
ways of looking at and interpreting the signal decomposition that
is being performed. With the traditional filter bank theory the de-
composition is viewed as a frequency partitioning of a fullband
signal into subbands. Wavelet theory views the decomposition as
a partitioning into nested function spaces within a multiresolution
framework. Both views are related and together provide a better
understanding of such systems and this has spurred great interest
in the theory, design and applications of such systems. Wavelet
theory emphasizes the importance of vanishing moments (VM)
and regularity of the wavelet functions which is something not
considered in traditional filter bank theory. Wavelet filters can be
classified as either biorthogonal or orthogonal. This paper will con-
sider only orthogonal filters which have the advantages of noise
decorrelation in denoising, simple bit-allocation in compression
and more generally the l2 norm (energy) preserving property.
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The design of wavelet filter bank can be viewed as a con-
strained optimization problem. The first essential constraint is the
perfect reconstruction (PR) or orthogonality constraint (some filter
banks known as QMF [8] technically only have approximate PR).
The second constraint is the VM constraint to ensure regularity in
the equivalent wavelet functions. After imposing these constraints
the remaining degrees of freedom can be optimized with respect
to some chosen criterion which can be application specific. One
criterion that has received at lot of attention from the community
is the maximization of the compaction energy of a specific sig-
nal the wavelet is analyzing, i.e. signal adapted filter banks [9–12].
This compaction energy optimized filter has the potential of im-
proved performance in applications such as signal analysis, coding
and communications [11]. The frequency selectivity property of a
traditional low-pass filter is however not ensured using this crite-
rion. Good frequency selectivity is important to ensure the effects
of aliasing or energy leakage is minimized in the subband sig-
nals and this is important in some applications such as system
monitoring [13] and system identification in subbands [14]. Note
that frequency selectivity only affects aliasing in the subbands and
not the reconstructed signal (assuming no processing in the sub-
bands). A perfect reconstruction filter bank has no aliasing in the
reconstructed signal irrespective of the frequency selectivity as the
aliasing in the subbands is canceled during reconstruction.

The challenge is therefore to design filters with good com-
paction energy while still having good frequency selectivity. This
paper presents a method to design energy optimized filters that
have a prescribed degree of transition band sharpness to ensure a
desired degree of frequency selectivity. The method is based on the
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Zero-Pinning (ZP) technique on the Bernstein polynomial which is
a simple and versatile technique for orthogonal wavelet filters. The
ZP technique was first proposed in [15] where all the degrees of
freedom were used to shape the frequency response of the filter by
strategic pinning of the zeros of the polynomial. The ZP technique
was then extended where only some of the degrees of freedom
were used for pinning and the remaining degrees were used to op-
timize the filter with respect to the analytic quality (a criterion for
the design of Hilbert-pairs) [16]. An exhaustive search based tech-
nique is required in the optimization in [16] because the objective
function cannot be expressed as a convex function. The search
technique is computationally inefficient and is only practical when
the number of remaining degrees is small (less than two). In this
paper only two degrees of freedom will be used for zero pinning
and the remaining degrees will be used to optimize the filter with
respect to some energy function which is convex. The optimiza-
tion can be cast as a Semidefinite Programming (SDP) problem for
which efficient algorithms and freeware which are widely avail-
able. With this approach both the frequency selectivity criterion
and the compaction energy criterion can be simultaneously ad-
dressed in the filter design. The novelties of this paper are:

1. The design of wavelet filters using two criteria, i.e. compaction
energy and frequency selectivity, at the same time.

2. Combining the ZP technique on the Bernstein polynomial with
Semidefinite Programming in the design problem formulation.

3. Derivation of the objective function in terms of the Bernstein
parameters, and the linear inequality bound on the filter re-
sponse to ensure good frequency selectivity.

In Section 2 a review of the fundamentals of wavelets, filter
banks and Bernstein polynomial as it relates to the work of this
paper is presented. Section 3 describes the method for optimizing
the filter with respect to an energy measure but with a prescribed
degree of sharpness in the transition band. Relevant constraints
to the problem are formulated here and it is shown how to cast
the design problem as a semidefinite programming (SDP) problem.
Design examples and discussions are presented in Section 4. Sec-
tion 5 presents an application in image denoising and the paper
concludes in Section 6.

2. Preliminaries and background

A two-channel multirate filter bank is made up of the following
filters: H0(z) (low-pass analysis), H1(z) (high-pass analysis), F0(z)
(low-pass synthesis) and F1(z) (high-pass synthesis). The follow-
ing conditions must be satisfied to ensure perfect reconstruction
(PR) [17]:

H1(z) = z−1 F0(−z), F1(z) = zH0(−z)

and

M(z) + M(−z) = 1 (1)

where the product filter M(z) is defined as

M(z) ≡ H0(z)F0(z)

For an orthogonal filter bank the low-pass filters are time-reverse
versions of each other F0(z) = H0(z−1). Define H(z) ≡ H0(z) (sub-
script 0 dropped) for convenience. The low-pass H(z) filter is also
known as a conjugate-quadrature-filter (CQF) and can be obtained
from a spectral factorization of a product filter M(z) = H(z)H(z−1).
For convenience we shall use the almost-centered-at-the-origin
(ACO) version of the CQF. A CQF impulse response h(n), which
must be of even length L f , is said to be ACO if its impulse re-
sponse support is given by n ∈ [−(L f /2 − 1), L f /2]. Using the ACO

version the delay factor z−N is not needed in the equations above.
The product filter must satisfy the halfband constraint (1) and also
the non-negativity constraint

M
(
e jω)

� 0 (2)

The equivalent scaling function φ(t) and wavelet ψ(t) are defined
implicitly through the two-scale (refinement) equations:

φ(t) = 2

H0(1)

∑
k

h0(k)φ(2t − k)

ψ(t) = 2

H1(1)

∑
k

h1(k)φ(2t − k)

where h0(k) and h1(k) are the coefficients of H0(z) and H1(z) re-
spectively. Zeros at z = −1 are imposed on the CQF H(z) to give
vanishing moments (VM) to the equivalent wavelet ψ(t) so that
smoothness is achieved.

One way to construct the product filter is through the Paramet-
ric Bernstein Polynomial (PBP) introduced by Caglar and Akansu
in [18]:

B N(x;α) ≡
N∑

i=0

f (i)

(
N
i

)
xi(1 − x)N−i (3)

where N is odd, α = [ α0 . . . α(N−1)/2 ]T and

f (i) ≡
{

1 − αi 0 � i � 1
2 (N − 1)

αN−i
1
2 (N + 1) � i � N

(4)

The z-transform product filter function can then be obtained as

M(z) = B

(
−1

4
z
(
1 − z−1)2

)

where for brevity B(x) = B N(x;α). The following substitution is
used: x = − 1

4 z(1 − z−1)2 = sin2(ω
2 ). The PR constraint (1) is au-

tomatically satisfied by the M(z) constructed using the PBP. The
desired number of zeros at z = −1 of M(z) can be imposed by
setting an appropriate number of Bernstein parameters to zero.
Specifically setting αi = 0 for i = 0, . . . , L will give 2(L + 1) zeros;
hence (L + 1) zeros (vanishing moment) for the CQF H(z). In sum-
mary the PR constraint and the vanishing moment (VM) condition
are structurally guaranteed. This is the appeal of using the PBP.
The set of non-zero Bernstein parameters:

αnz ≡ [αL+1, . . . , α(N−1)/2]T

can be regarded as free-parameters that can be used to tailor the
characteristics of the filter to whatever desired criterion. The num-
ber of degrees of freedom available in the design process is:

d f ≡ dim
(
αnz) = (N − 1)/2 − L

3. Energy optimized filter with prescribed sharpness

Two commonly used energy measures will be considered in
this work.

3.1. Least squares criterion

Consider first the traditional stopband energy measure of the
filter given by [17]

Ẽ S ≡
π∫

ωS

∣∣H
(
e jω)∣∣2

dω (5)
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