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a b s t r a c t

The co-prime array, which utilizes a co-prime pair of uniform linear sub-arrays, provides a systematical
means for sparse array construction. By choosing two co-prime integers M and N, ( )MN co-array ele-
ments can be formed from only ( + )M N physical sensors. As such, a higher number of degrees-of-
freedom (DOFs) is achieved, enabling direction-of-arrival (DOA) estimation of more targets than the
number of physical sensors. In this paper, we propose an alternative structure to implement co-prime
arrays. A single sparse uniform linear array is used to exploit two or more continuous-wave signals
whose frequencies satisfy a co-prime relationship. This extends the co-prime array and filtering to a joint
spatio-spectral domain, thereby achieving high flexibility in array structure design to meet system
complexity constraints. The DOA estimation is obtained using group sparsity-based compressive sensing
techniques. In particular, we use the recently developed complex multitask Bayesian compressive sen-
sing for group sparse signal reconstruction. The achievable number of DOFs is derived for the two-fre-
quency case, and an upper bound of the available DOFs is provided for multi-frequency scenarios. Si-
mulation results demonstrate the effectiveness of the proposed technique and verify the analysis results.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

An important application of array signal processing is direc-
tion-of-arrival (DOA) estimation, which determines the spatial
spectrum of the impinging electromagnetic waves. It is well
known that an N-element uniform linear array (ULA) has −N 1
degrees-of-freedom (DOFs), i.e., it resolves up to −N 1 sources or
targets by using conventional DOA estimation methods, such as
MUSIC and ESPRIT [3,4]. On the other hand, a higher number of
DOFs can be achieved to resolve more targets by using the same
number of array sensors if they are sparsely placed [5,6]. An in-
creased number of DOFs is usually achieved by exploiting the ex-
tended difference co-array whose virtual sensor positions are de-
termined by the lag differences between the physical sensors.

Among a number of techniques that are available for sparse
array construction, co-prime array [7] is considered attractive due
to its capability of the systematic sparse array design. By choosing
two integer numbers M and N to be co-prime, ( )MN targets can
be resolved with + −M N 1 physical sensors [8]. This co-prime
array concept can be generalized by introducing an integer factor
that compresses the inter-element spacing of one constituting
sub-array, thereby achieving increased DOFs [9,11]. In addition, by
placing the two sub-arrays co-linearly instead of co-located, the
number of unique virtual sensors is further increased, which
benefits DOA estimation based on sparse signal reconstruction
techniques [10,11].

While the co-prime array concept has been developed using
physical uniform linear sub-arrays, we propose in this paper an
effective scheme that implements co-prime array configurations
using a single sparse ULA with two or more co-prime frequencies.
As such, the ULA, whose inter-element spacing is respectively M1

and M2 half-wavelengths of the two respective frequencies, with
M1 and M2 to be mutually co-prime integers, acts as virtual sub-
arrays, resulting in an equivalent structure to co-prime arrays. In
essence, the proposed approach integrates the concept of co-prime
array and co-prime filter to reduce complexity and achieve high
system performance. Unlike co-prime arrays, wherein the num-
bers of sub-array sensors and the inter-element spacings have to

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/sigpro

Signal Processing

http://dx.doi.org/10.1016/j.sigpro.2016.06.008
0165-1684/& 2016 Elsevier B.V. All rights reserved.

☆The work of S. Qin, Y.D. Zhang, and M.G. Amin was supported in part by the
Office of Naval Research under Grant No. N00014-13-1-0061 and by a subcontract
with Defense Engineering Corporation for research sponsored by the Air Force
Research Laboratory under Contract FA8650-12-D-1376. Part of the results was
presented at IEEE International Workshop on Computational Advances in Multi-
Sensor Adaptive Processing, Saint Martin, December 2013 [1] and the SPIE Wireless
Sensing, Localization, and Processing Conference, Baltimore, MD, May 2014 [2].

n Corresponding author.
E-mail address: ydzhang@temple.edu (Y.D. Zhang).

Signal Processing 130 (2017) 37–46

www.sciencedirect.com/science/journal/01651684
www.elsevier.com/locate/sigpro
http://dx.doi.org/10.1016/j.sigpro.2016.06.008
http://dx.doi.org/10.1016/j.sigpro.2016.06.008
http://dx.doi.org/10.1016/j.sigpro.2016.06.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2016.06.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2016.06.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2016.06.008&domain=pdf
mailto:ydzhang@temple.edu
http://dx.doi.org/10.1016/j.sigpro.2016.06.008


satisfy the co-prime relationship, only the frequencies are required
to be co-prime in the proposed scheme.

The proposed scheme can be adopted for both passive and
active radar systems. The former requires filtering the signal ar-
rivals at the employed co-prime frequencies, whereas the latter
requires emitting those frequencies from a single antenna or a
phased array and receiving the target backscattering with ULA.
The transmitter and receiver can be located or widely separated.
For active sensing, sum co-array of the transmit and receive arrays
replaces the difference co-array of the two structures which is
associated with receive only operations [12].

In this paper, we derive the analytical expression of the avail-
able number of DOFs as a function of the number of physical
sensors, L, and the selected co-prime frequencies for the two-fre-
quency case. The results resemble those derived in [9,11] for a
physical co-prime array. The key difference lies in the fact that,
unlike the co-prime array where each sub-array uses a different
number of sensors, the two virtual sub-arrays in the underlying
structure refer to the same physical ULA and thus share the same
number of sensors. In addition, the number of physical sensors is
not tied to the co-prime frequency multipliers M1 and M2. The
property enables a higher flexibility in array design and operation.
In particular, for a fixed number of physical array sensors, L, we
demonstrate that a high number of DOFs, proportional to L2, can
be achieved with large values of M1 and M2. When K mutually co-
prime frequencies are used, each pair of these frequencies can
form a virtual co-prime array as discussed above. Accordingly,

( )K L2 2 DOFs can be achieved.
It is shown that, in the proposed scheme, the self-lags in the co-

array corresponding to each sub-array form a subset of the sub-
array cross-lags. As such, the available DOFs are solely determined
by the number of cross-lags between the two sub-arrays. Because
of the frequency-dependent characteristics of the source, channel
and target radar cross section (RCS), the received signal vectors
corresponding to the different frequencies have a common spatial
support, i.e., DOA, but generally have distinct coefficients. Thus,
DOA estimations become a group sparse signal reconstruction
problem. In this case, the self-lags obtained for each sub-array can
also be exploited for possible performance improvement.

A large number of compressive sensing (CS) techniques have
been proposed to deal with this problem. In this paper, we con-
sider the problem under the Bayesian compressive sensing (BCS)
or sparse Bayesian learning framework [13–17], which generally
achieves a better reconstruction performance over those on the
basis of the greedy algorithms and dynamic programming ap-
proaches, such as the orthogonal matching pursuit (OMP) [18] and
the least absolute shrinkage and selection operator (LASSO) [19]
algorithms. In particular, we use the complex multitask Bayesian
compressive sensing (CMT-BCS) algorithm [20] to determine the
DOAs of group sparse complex signals. This algorithm jointly treats
the real and imaginary components of a complex value, in lieu of
decomposing them into independent real and imaginary compo-
nents. As a result, the sparsity of the estimated weight vectors can
be improved, yielding better signal recovery. Group sparsity
treatments for real and imaginary entries have been reported in,
e.g., [21,22].

The remainder of the paper is organized as follows. In Section
2, we first review the co-prime array concept based on the dif-
ference co-array. Then, the array signal model exploiting co-prime
frequencies is summarized in Section 3. Analytical expressions of
array aperture and the number of DOFs are derived in Section 4
with respect to two and multiple co-prime frequencies. Sparsity-
based DOA estimation exploiting the CMT-BCS is described in
Section 5. Simulation results are provided in Section 6 to compare
the performance of DOA estimation for different scenarios and
validate the usefulness of the results presented in Section 5.

Section 7 concludes this paper.
Notations: We use lower-case (upper-case) bold characters to

denote vectors (matrices). In particular, IN denotes the ×N N
identity matrix. (·)⁎ implies complex conjugation, whereas (·)T and
(·)H respectively denote the transpose and conjugate transpose of a
matrix or vector. (·)vec denotes the vectorization operator that
turns a matrix into a vector by stacking all columns on top of each
other, and ( )xdiag denotes a diagonal matrix that uses the ele-
ments of x as its diagonal elements. ∥·∥2 and ∥·∥1 respectively
denote the Euclidean (l2) and l1 norms, and (·)E is the statistical
expectation operator. ⊗ denotes the Kronecker product, and ⌊·⌋
denotes the floor function and returns the largest integer not ex-
ceeding the argument. (·)Pr denotes the probability density func-
tion (pdf), and ( | )x a b, denotes that random variable x follows a
Gaussian distribution with mean a and variance b. Re(x) and Im(x)
denote the real and imaginary parts of complex element x,
respectively.

2. Co-prime array concept

In this section, we first review the co-prime array configuration
that achieves a higher number of DOFs based on the difference co-
array concept. A co-prime array [7] is illustrated in Fig. 1, where M
and N are co-prime integers, i.e., their greatest common divisor is
one. Without loss of generality, we assume <M N . The unit inter-
element spacing d is typically set to λ/2, where λ denotes the
wavelength. The array sensors are positioned at

= { | ≤ ≤ − } ∪ { | ≤ ≤ − } ( ) Mnd n N Nmd m M0 1 0 1 . 1

Because the two sub-arrays share the first sensor at the zeroth
position, the total number of sensors used in the co-prime array is

+ −M N 1. Note that the minimum inter-element spacing in this
co-prime array is λ=d /2.

Denote = [ … ]+ −p pp , , M N
T

1 1 as the positions of the array sen-
sors, where ∈ pi , = … + −i M N1, , 1, and the first sensor,
located at =p 01 , is assumed as the reference. Assume that Q
uncorrelated signals impinging on the array from angles
Θ θ θ= [ … ], , Q

T
1 , and their discretized baseband waveforms are

expressed as ( ) = …s t t T, 1, ,q , for = …q Q1, , . Then, the data
vector received at the co-prime array is expressed as,

∑ θ( ) = ( ) ( ) + ( ) = ( ) + ( )
( )=

t s t t t tx a n As n ,
2q

Q

q q
1

where

θ( ) = …
( )

π
λ θ π

λ θ( ) ( )+ −⎡
⎣⎢

⎤
⎦⎥e ea 1, , ,

3q
j p j

p T2 sin
2

sinq
M N

q
2 1

is the steering vector of the array corresponding to θq,
θ θ= [ ( ) … ( )]A a a, , Q1 , and ( ) = [ ( ) … ( )]t s t s ts , , Q

T
1 . The elements of

the noise vector ( )tn are assumed to be independent and identi-
cally distributed (i.i.d.) random variables following the complex
Gaussian distribution σ( )+ −I0, n M N

2
1 .

The covariance matrix of the data vector ( )tx is obtained as

#0 #1 # − 1#2

#0 #1 # − 1#2

Fig. 1. The coprime array configuration.
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