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a b s t r a c t

In this paper, a method based on the numerical Laplace transform is used for calculating the full linear
convolution of real or complex signals. An algorithm for obtaining the last N values of the convolution is
presented, along with a method for finding an optimal value for the decay coefficient of the transform. It
is shown that the use of the numerical Laplace transform formulation allows the calculation of each half
of the linear convolution independently, which has computational benefits. The numerical Laplace
transform is expressed as the fast Fourier transform of signals that have been premultiplied by a de-
creasing exponential window characterized by decay coefficient c. The error of the resulting linear
convolution depends on the value of the decay coefficient; undervalue results in the generation of wrap-
around error whereas overvalue causes amplification of Gibbs phenomenon. In this paper, a formula that
optimizes the value of the decay coefficient is developed. A trade-off value for c is obtained and error
analysis shows that it outperforms other coefficients proposed in the literature when applied to the
calculation of linear convolution. The relative errors obtained are of the order of 10�6% and 10�9% for
single and double precisions.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

THE numerical Laplace transform (NLT) was introduced by
Wilcox [1] for the analysis of linear systems. It has been used for
such motives by others since, notably in the analysis of transients
[2–5]. In recent years, a renewed interest has occurred towards the
NLT for its ability to improve the computation of linear
convolutions.

Linear convolution is usually calculated by applying circular
convolution on signals doubled with zero-padding [6]. However,
this method increases significantly the amount of data to process,
and consequently the computational complexity, especially in the
case of 2D or 3D convolutions. Algorithms using the generalized
discrete Fourier transform (GDFT) were used in order to obtain full
linear convolution at reduced computational cost [7,8]. Babic and
Mandic proposed a similar method for obtaining full linear con-
volution with one circular convolution, by embedding the first
non-wrapped samples in the high-range of the full dynamic range
given by finite arithmetic precision, and the last N wrapped
samples in the low-range, at the cost of sacrificing numerical

accuracy [9]. The NLT, a specific case of the GDFT, was also used for
such calculation by Martinez [7], but only to obtain the first N
convolution values.

In this paper, a method for obtaining full 2N�1 values of the
linear convolution with the NLT is presented. The main asset of the
NLT is that it allows a form of control over the periodical repeti-
tions that occur due to the discrete nature of the signal. With this
property, it is possible to suppress wrap-around error from circular
convolutions. This allows the computation of linear convolution
without doubling signals with zero-padding, which is computa-
tionally beneficial. With the NLT, it is also possible to obtain the
first or last N values of the linear convolution with the calculation
of only one circular convolution, unlike the GDFT which requires
two calculations when convolving signals with complex values.

A succinct review of the numerical Laplace transform is pre-
sented along with some properties and its application to linear
convolution. The main benefits of using the NLT for such appli-
cation are described, along with a method for calculating the full
linear convolution of complex signals using the NLT. The core of
this paper deals with the elaboration of a simple formula to
evaluate the optimized exponential decay coefficient used in the
NLT. This coefficient is a trade-off value between the reduction of
the wrap-around error, errors due to computer machine and Gibbs
phenomenon. Wilcox [1], Wedepohl [3] and Inoue [10] have also
worked in order to find such trade-off value. However, their ana-
lysis was not aiming at optimizing its application to linear

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/sigpro

Signal Processing

http://dx.doi.org/10.1016/j.sigpro.2016.03.029
0165-1684/& 2016 Elsevier B.V. All rights reserved.

Abbreviations: NLT, numerical Laplace transform; GDFT, generalized discrete
Fourier transform; DTFT, discrete-time Fourier transform; FFT, fast Fourier trans-
form; DFT, discrete Fourier transform

E-mail addresses: jean-michel.attendu@polymtl.ca (J.-M. Attendu),
annie.ross@polymtl.ca (A. Ross).

Signal Processing 130 (2017) 47–56

www.sciencedirect.com/science/journal/01651684
www.elsevier.com/locate/sigpro
http://dx.doi.org/10.1016/j.sigpro.2016.03.029
http://dx.doi.org/10.1016/j.sigpro.2016.03.029
http://dx.doi.org/10.1016/j.sigpro.2016.03.029
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2016.03.029&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2016.03.029&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2016.03.029&domain=pdf
mailto:jean-michel.attendu@polymtl.ca
mailto:annie.ross@polymtl.ca
http://dx.doi.org/10.1016/j.sigpro.2016.03.029


convolution (no such work was found in the literature); rather, it
aimed at optimizing the representation of analytical functions in
the Laplace domain. Since similar numerical phenomena are in-
volved in both applications, our results are analyzed and compared
to those obtained with their methods.

The proposed method is applied to the resolution of an im-
pulsive excitation of a 1D vibrational system, and to the convolu-
tion of different simple mathematical signals to bring out the
impact of Gibbs phenomenon.

2. Numerical Laplace transform

2.1. Relation to the generalized Fourier transform

The numerical Laplace Transform (NLT) is a special case of
generalized discrete Fourier transform (GDFT). For discrete signal

[ ]x n , ={ … − }n N0, , 1 , GDFT is defined as [11]
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where α∈ is the modulation coefficient, and ={ … − }k N0, , 1 is
the frequency vector. Eq. (1) is equivalent to the regular discrete
Fourier transform (DFT) of signal x[n] initially multiplied with a
complex exponential. Similarly, (2) is analogous to the inverse DFT
demodulated using the complex exponential of opposite sign. The
standard DFT case is obtained with α = 0.

As discussed by Martinez et al. [7], Narasimha [8], Babic and
Mandic [9] and Inoue et al. [10] in the case of real signals, full
2N�1 values of linear convolution using GDFT with complex
modulation can be obtained by performing only one circular
convolution of length N, with specific modulation parameter α in
(1). For example, with α π= /2, concatenation of the real and ima-
ginary parts of the resulting circular convolution produces the
linear convolution. This is true only if the convolved signals are
real. It results in an improvement of the computational complexity
of about 50% in comparison with standard zero-padding method.
However, when convolving complex signals, such as when the
impulse response of a physical system is complex, two circular
convolutions are required to obtain the linear convolution.

2.2. Mathematical formulation

NLT is obtained when the modulation coefficient is chosen to
be positive and imaginary ( α = ∙ ∈ > )i c c c, , 0 . Consequently, va-
lues of the complex exponential in (1) are real and decrease as n
increases. For this reason, c is referred as the “damping” or “decay”
coefficient [12] because multiplication of resulting decreasing ex-
ponential causes an attenuation of the signal with respect to time.

NLT, expressed with discrete Fourier transform (DFT), is defined
as [13]
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The inverse NLT is
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A main asset of the NLT (and the GDFT) is that by being very
close to the DFT, it can be computed using fast Fourier transform
(FFT) algorithms, making the process very efficient.

2.3. Property 1: Reduction of the truncation error

Another asset of the NLT is that it attenuates truncation effects
in the time domain in the case of any causal signal ( ) =x t 0 for
to0. It thereby acts as a substitute to windowing. This property is
brought up by expressing the discretization of the analytical signal
and applying Laplace transform.

Multiplication of analog signal ( )x t with a Dirac comb Π[ ]n is
performed to obtain discretization. The Dirac combs in the time
and frequency domains are expressed as
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By applying the convolution property of the Fourier transform,
we obtain the following equation for x(t):
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Integrations are simplified by the Dirac combs, and Eq. (6) re-
duces to:
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As shown by Inoue [10], ω( )X can be isolated which brings out
two error terms:

ω ω( ) = ^( ) + + ( )X X E E . 81 2

Here, ω^( )X is analogous to the numerical Laplace transform of x:
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Factor E1 is the discretization error (or aliasing):
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The periodical repetitions of ω( )X brought out in (10) are
therefore a consequence of discretization in the time domain. The
repetitions are spaced proportionally to the sampling frequency.

In most engineering applications, function ω( )X has a spectral
content that tends to zero for high frequency values. Thus, by
taking a sufficiently high sampling frequency, E1 can be neglected.

Factor E2 is the truncation error:
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From (11), it is clear that a high value of c attenuates the effects
of the truncation errors.
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