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a b s t r a c t

Public health officials are increasingly recognizing the need to develop disease-forecasting
systems to respond to epidemic and pandemic outbreaks. For instance, simple epidemic
models relying on a small number of parameters can play an important role in charac-
terizing epidemic growth and generating short-term epidemic forecasts. In the absence of
reliable information about transmission mechanisms of emerging infectious diseases,
phenomenological models are useful to characterize epidemic growth patterns without
the need to explicitly model transmission mechanisms and the natural history of the
disease. In this article, our goal is to discuss and illustrate the role of regularization
methods for estimating parameters and generating disease forecasts using the generalized
Richards model in the context of the 2014e15 Ebola epidemic in West Africa.
© 2017 KeAi Communications Co., Ltd. Production and hosting by Elsevier B.V. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).

1. Introduction

Developing tools for stable parameter estimation and reliable forecasting of emerging and re-emerging infectious disease
epidemics represents a key priority for public health officials and government agencies in their work to prevent and mitigate
disease threats. At the early stage of an outbreak, when incidence data are limited and subject to reporting delays, it is often
premature to characterize the transition rates of individuals between various disease epidemiological compartments using,
for instance, SEIR-type systems of differential equations, which may involve a substantial number of unknown parameters.
For the early transmission period, phenomenological models of a logistic type, describing the progression of the epidemic in
terms of the cumulative number of reported cases, C, provide a simple alternative. Inwhat follows, we employ the generalized
Richards model (Chowell et al., 2016; Smirnova et al., 2017; Turner, Bradley, Kirk, & Pruitt, 1976)
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to estimate crucial disease parameters, such as the intrinsic growth rate (r), the deceleration of growth (p), the final size of the
epidemic (K), the disease turning point (t), and the extent of deviation from the S-shaped dynamics of the classical logistic-
growth curve (a), see Fig. 1. In (1.1), T is the duration of the outbreak.

For the original Richards model (p ¼ 1), the closed-form solution is available

CðtÞ ¼ K�
1þ ae�arðt�tÞ�1=a; (1.2)

which simplifies its theoretical and numerical study. However, the statistical analysis of the fitting accuracy for the original
and generalized Richardsmodels indicates that the generalized Richardsmodel outperforms its original version for epidemics
characterized by an early sub-exponential growth phase (Chowell et al., 2016). For such outbreaks, the value of parameter p in
(1.1) is less than 1 (0<p<1), and the reduction in the residual sum of squares appears to be statistically significant. Several
mechanisms could give rise to initial sub-exponential growth in case incidence including (Chowell, Viboud, Hyman, &
Simonsen, 2015; Viboud, Simonsen, & Chowell, 2015): (i) spatially clustered contact structures (e.g., high clustering levels)
(Chowell et al., 2015; Szendroi & Csanyi, 2004); (ii) early onset of population behavioral changes and control interventions
(Chowell et al., 2015; Szendroi & Csanyi, 2004); and (iii) substantial heterogeneity in susceptibility and infectivity of the host
population that introduces high local variability in the local reproduction number that fluctuates around the epidemic
threshold at 1.0. The two limiting cases of the generalized Richards model are those in which p ¼ 0 (constant incidence
growth) or p ¼ 1 (exponential growth) (Viboud et al., 2015).

Fig. 2 illustrates representative epidemic profiles, dCdt , that the generalized Richards model supports, as the deceleration of
growth parameter, p, is varied. Overall, as parameter p increases, the epidemic profile shows faster growth that converges to
exponential rate as p/1 while keeping the epidemic size, K, fixed. On the other hand, parameter a modulates the epidemic
turning point (Fig. 2), which occurs earlier as this parameter increases.

Thus, in our investigation we utilize the generalized four-parametric model (1.1), and solve the ODE-constrained least
squares problem to estimate r, p, K, t, and a from early data of the 2014e15 Ebola epidemics in Guinea, Sierra Leone, and
Liberia. We then use the reconstructed parameter values to forecast future incidence cases by propagating uncertainty in the
system forward in time.

2. The regularized least squares problem

To present a regularized numerical algorithm for stable parameter estimation, we introduce

b :¼ r
K1�p; HðtÞ :¼ CðtÞ

K
; (2.1)

and arrive at the normalized model (Cavallini, 1993)

Fig. 1. Parameter identification process from early incidence data using the generalized Richards model.
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