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A B S T R A C T

Various parametric and nonparametric modeling approaches exist for real-time prediction in time-to-event
clinical trials. Recently, Chen (2016 BMC Biomedical Research Methodology 16) proposed a prediction method
based on parametric cure-mixture modeling, intending to cover those situations where it appears that a non-
negligible fraction of subjects is cured. In this article we apply a Weibull cure-mixture model to create
predictions, demonstrating the approach in RTOG 0129, a randomized trial in head-and-neck cancer. We
compare the ultimate realized data in RTOG 0129 to interim predictions from a Weibull cure-mixture model, a
standard Weibull model without a cure component, and a nonparametric model based on the Bayesian bootstrap.
The standard Weibull model predicted that events would occur earlier than the Weibull cure-mixture model, but
the difference was unremarkable until late in the trial when evidence for a cure became clear. Nonparametric
predictions often gave undefined predictions or infinite prediction intervals, particularly at early stages of the
trial. Simulations suggest that cure modeling can yield better-calibrated prediction intervals when there is a
cured component, or the appearance of a cured component, but at a substantial cost in the average width of the
intervals.

1. Introduction

Many clinical trials with time-to-event outcomes schedule interim
and final analyses to take place on the occurrence of a pre-specified
number of events. For example, a cancer trial could be designed to have
80% statistical power with 300 deaths, with planned interim analyses
after the 100th and 200th deaths, and a final analysis when the 300th
death occurs [1]. Because the times of occurrence of these landmark
events are random, it is desirable to have a tool for predicting them as
an aid to logistical planning.

We have developed a range of models for making such predic-
tions [2–6] and demonstrated their utility in a motivating clinical trial [7].
These models assume that every participant is susceptible and will
eventually experience the event if follow-up time is sufficiently long [8,9].
This assumption may not hold in diseases where there is a possibility of
cure — for example, in many childhood cancers and some adult cancers
such as leukemia [10,11], colon cancer [12], and head-and-neck can-
cer [13]. Failure to accommodate the possibility of cure could in principle
lead to bias, because a fraction of surviving patients would be predicted to
experience events to which they are effectively no longer susceptible.

Recognizing this gap in the literature, Chen [14] recently proposed
the use of cure models [15] in prediction. His method involves, at each
prediction time, selecting the best-fitting from among a menu of cure-
mixture models (exponential, Weibull, log-logistic and lognormal), and
using it to create predicted values for all as-yet unenrolled subjects and
all enrolled but censored subjects. He demonstrated the application of
his method in a two-arm cancer immunotherapy trial. At every
prediction time, goodness-of-fit statistics selected the Weibull cure-
mixture model. Initial predictions of the time of the planned final
analysis (to be conducted at the 416th death) were as much as 20
months early, but subsequent predictions were closer to the target. Only
at the final two (of six) predictions did the empirical survival curve
reveal the characteristic shape of the cure model.

Chen presented no evaluation of how his method would perform in
repeated samples, either as an estimation or a prediction procedure.
Although parametric cure-mixture models are generally identifiable
and can be estimated by maximum likelihood with standard asympto-
tics, they are known to be unreliable in the small-to-moderate sample
sizes typically observed in clinical trials [16]. Moreover estimation is
particularly challenging when follow-up is short and empirical survival
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curves have not had time to reach a plateau. Because predictions are of
most value early in the trial, which is precisely when no subjects have
extended follow-up, there is concern that the mixture-modeling
approach may not be helpful in typical practice.

Another motivating example is Radiation Therapy Oncology Group
trial 0129 (RTOG 0129) [1], which compared accelerated-fractionation
radiotherapy plus concurrent cisplatin-based chemotherapy to stan-
dard-fractionation radiotherapy alone among patients with orophar-
yngeal squamous-cell carcinoma. The study found no statistically
significant treatment effect on survival. An interesting feature of the
data is that the Kaplan-Meier (KM) curves for both arms level off
(Fig. 1), suggesting that a large fraction of subjects are effectively cured
of their cancer.

In this paper we further explore the Weibull cure-mixture prediction
model that provided the best fit in Chen's immunotherapy trial
example. We apply this model, together with a non-cure Weibull model
and a nonparametric model, to create and empirically evaluate interim
predictions in RTOG 0129. We study the relative performance of the
methods in a simulation experiment.

2. Methods

2.1. General framework for event-time prediction

We briefly review the prediction framework described in detail
in [2-4,7,8]. Assume we are conducting a two-arm randomized trial
that began enrolling patients at calendar time 0. Subjects arrive
according to a Poisson process with a constant rate of μ per unit of
time and are randomized 1:1 between study arms. Each participant can
either i) develop the event of interest, ii) remain in the trial without
occurrence of the event, or iii) become lost to follow-up. At current
calendar time t0> 0 we seek to make predictions about the future
course of the trial. A typical objective is to predict the calendar time T*

at which the D*th event will occur; for example, at t0=6 months we
may predict the time T* at which event D*=100 will occur. The essence
of the method is to use the accumulating trial data to estimate the
accrual/survival model, which we then use to create predictions about
the future course of the trial.

We previously developed a Bayesian prediction method based on a
Weibull (non-cure) survival model [4], which assumes that survival
time T in arm j, j=0,1 follows the survival function

T t S t α β t β t α βPr[ > ] = ( | , ) = exp [−( / ) ], > 0, > 0, > 0,j j j
α

j jj (1)

and that time to loss to follow-up in arm j independently follows a
Weibull with arm-specific scale and shape parameters. The first step in
the prediction modeling is to specify priors for the enrollment rate and
the parameters of the Weibull event and loss to follow-up distributions
in each arm. To create predictions at time t0 we compute the posterior
density of the parameters using the data accrued up to that time. Then
we conduct the following steps many times:

1. Sample a set of parameters from the posterior using importance
sampling (or some other method).

2. Conditional on the sampled parameters, sample a data set from the
predictive distribution of the enrollment, survival and loss times:

(a) Simulate the event and loss to follow-up times for participants
who are enrolled and on study but have not yet experienced an
event.

(b) If the total enrollment goal has not yet been reached, simulate
the enrollment, event and loss times for a hypothetical set of
participants who have not yet been enrolled.

(c) Determine each subject's date of event or loss (real or simu-
lated), and rank the event dates among subjects who either have
had an event or are predicted to have an event.

(d) Identify the date of the landmark time T*.

Each replication of steps 1 and 2 generates a draw from the
predictive distribution of the landmark time T*. Repeating them many
times, one can predict the landmark time as, for example, the median of
the simulated distribution of T*, with 95% prediction interval equal to
the interval between the 2.5th and 97.5th centiles of the simulated
distribution.

2.2. Prediction using the Weibull cure-mixture model

Common failure-time models assume that every subject is suscep-
tible to the event of interest and will experience it if followed long
enough. This assumption fails in studies where there is a possibility of
cure. The cure-mixture model addresses this deficiency by positing that
the study sample is a mixture of uncured individuals (who will
experience the event of interest if not censored) and cured individuals
(who will never experience it no longer how long we follow
them) [15–18]. Let T denote the time to the event of interest. The
Weibull cure-mixture model asserts that for a subject in arm j,

T t ρ S t α β ρPr[ > ] = (1 − ) × ( | , ) + ,j j j j (2)

where S(t|αj,βj) is the Weibull survival function from Eq. (1), and ρj ∈
[0,1] is the probability of cure in arm j. When t is large, the survival
function approaches the cure fraction ρj; when ρj=0, it reduces to the
standard Weibull survival model.

Many variations of the cure-mixture model appear in the litera-
ture [19]. A common version models the cure probability with a logistic
regression and the survival with a Weibull distribution, the latter being
a popular choice thanks to its flexibility and its similarity to Cox
regression [20]. Our analyses will model both the cure probability and
the Weibull survival parameters only as functions of the randomization
arm (see Eq. (2)).

Under the Weibull cure-mixture model the overall prediction frame-
work remains the same, except that one must also predict cure status for
the censored and not-yet-enrolled subjects. We generate the cure status
of each unenrolled participant in arm j by binomial sampling with the
sampled cure probability ρ∼j. For a subject in arm j who was enrolled at
calendar time e, and who did not experience an event by prediction
time t0 ≥ e, the conditional cure probability for sampling is

T t e
ρ

ρ ρ S t e α β
Pr[cured| > − ] =

+ (1 − ) × ( − ; , )
,∼

∼

∼ ∼ ∼͠ j

j j j j
0

0 (3)

where S α β(⋅; , )∼ ∼
j j is the Weibull survival function given sampled para-

meters α∼j and β∼j . The cure status for these already enrolled subjects in
arm j is then simulated from the binomial distribution with this
estimated cure probability. For a subject who is simulated to be cured,
the event time is imputed as infinity. If a subject is simulated as not
cured, we impute the event time by drawing from the unconditional
Weibull for a new subject, or the Weibull conditional on the event time
being at least t0−e for an existing censored subject.
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Fig. 1. Kaplan-Meier curves in RTOG 0129: SFX=standard-fractionation radiotherapy
alone; AFX=accelerated-fractionation radiotherapy plus concurrent cisplatin-based che-
motherapy.
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