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a b s t r a c t

For decision support, the insights and predictive power of numerical process models can be hampered by
insufficient expertise and computational resources required to evaluate system response to new stresses.
An alternative is to emulate the process model with a statistical “metamodel.” Built on a dataset of
collocated numerical model input and output, a groundwater flow model was emulated using a Bayesian
Network, an Artificial neural network, and a Gradient Boosted Regression Tree. The response of interest
was surface water depletion expressed as the source of water-to-wells. The results have application for
managing allocation of groundwater. Each technique was tuned using cross validation and further
evaluated using a held-out dataset. A numerical MODFLOW-USG model of the Lake Michigan Basin, USA,
was used for the evaluation. The performance and interpretability of each technique was compared
pointing to advantages of each technique. The metamodel can extend to unmodeled areas.

Published by Elsevier Ltd.

1. Introduction

Numerical models are powerful tools for decision-making,
allowing managers to evaluate potential outcomes of new
stresses (for example, new high-capacity groundwater extraction
well impacts on headwater stream ecosystems). Several challenges
make it difficult for numerical models to be used in some assess-
ments. In particular, the trade-off between resolution and compu-
tational effort often means that a model to evaluate a new stress
covering a large enough area with sufficient detail requires more
computational effort than is practically available. This challenge can
be met by making available smaller-scale models that can be
adjusted for new stresses, particularly if served online (e.g. Jones,
2012). Another approach is to simplify the physics of the problem
using simplified models or analytical solutions that can be solved
quickly (e.g. Hamilton and Seelbach, 2011). We seek an interme-
diate approach inwhich the insights from a fine-scaled but regional
numerical model can be summarized as a statistical modelea

“metamodel” (Blanning, 1975)ewhich can make predictions nearly
instantly, albeit with less precision and certainty than the numer-
ical model. The concept is to generate model outputs simulating a
variety of conditions, treating those model results as data, and then
training a statistical model to those data such that predictions can
be made with only the statistical model. The dataset of model
outputs can be generated using a Monte Carlo approach to sys-
tematically vary parameter values (e.g. Nolan et al., 2012) and run
the model many times with those varied parameter sets. Alterna-
tively, a sufficiently large sample set may be generated from few
model runs if enough variability among input parameters is rep-
resented over time and space in a single model parameterization
(e.g. Fienen et al., 2013). The latter approach is adopted in this work
where the source of water to groundwater wells makes up the data
of interest, as evaluated in a numerical groundwater flowmodel. By
simulating several wells (and insuring that they are far enough
from one another as to not interact in a single model run), a sample
of several hundred data points can be obtained from a single run of
the numerical model. This allows variability of the system to be
sampled from natural system variability (as implemented in the
numerical model) rather than through varying model input
parameters.

In temperate regions such as the upper Midwest of the USA,
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shallow groundwater is closely connectedwith lakes, wetlands, and
streams (Winter et al., 1998). Groundwater discharge is important
both in supplying water and moderating temperatures and
geochemical conditions that maintain ecosystem functions.
Groundwater pumped for human use typically is supplied at the
expense of discharge that, under natural conditions, would supply
surface water. The fact that pumping results in a deficit in discharge
rather than a connection with recharge is sometimes misunder-
stood resulting in the famous “myth of safe yield” (Bredehoeft,
1997). In most cases, increased pumping does not change
recharge, so for mass balance to be honored, the decrease in
discharge is the main impact of pumping. This renders the recharge
rate largely irrelevant when answering the question of whether a
groundwater well will impact surface water or not (Barlow and
Leake, 2012).

Natural resource managers need reliable models to predict
surface water impacts due to installation of new groundwater
pumping wells. Our modeling efforts are focused on this outcome,
consistent with the best practice outlined by Jakeman et al. (2006).

In the Lake Michigan Basin (LMB) in the upper Midwest, USA, a
large regional, steady-state, groundwater model (Feinstein et al.,
2010) covers 215,000 km2 mostly in the states of Wisconsin and
Michigan, and minor portions of surrounding states (Fig. 1.1). Sur-
face water features are represented in the groundwater model us-
ing the MODFLOW River (RIV) package. The spatial coverage of this
model is well-suited to the needs of the upperMidwest and explicit
simulations using the model can answer many important man-
agement questions. The challenges outlined above of long runtimes
and the need to consider uncertainty remain. First, the original
scale of the regional model is too coarse for the level of detail
needed to evaluate local-scale impacts. We focused on the nearfield
region of themodel, illustrated in Fig.1.1. Taking advantage of a new
unstructured-grid version of the MODFLOW code used for the
regional model (Panday et al., 2013), Feinstein et al. (2015) created a
“semi-structured” version that collapses multiple deep layers into
oneeultimately reducing from 19 to 4 layerseand laterally refines
the model grid in the shallow system. This allows local surface-
water impacts to be evaluated with what is still a regional model.
Another major challenge, however, is not mitigatedethe run time
for a single simulation remains high. In order to evaluate the impact
of a single well, one model run is performed - thus, evaluating the
impact of many potential well locations requires many model runs,
each at a potentially large computational expense. One strategy to
overcome the issue of computational expense is through meta-
modeling (e.g. Fienen et al., 2015).

Razavi et al. (2012) and Asher et al. (2015) provide detailed re-
views of metamodeling (a.k.a. surrogate modeling) techniques in
various hydrologic applications. The goal of our work is to evaluate
three techniques for creating metamodels and to compare their
characteristics and performance. We chose these three techniques
to evaluate, each with different strengths. One propagates uncer-
tainty through to predictions (Bayesian Networks, BNs), another is a
black box (Artificial neural networks, ANNs), and the third is an
efficient technique with potentially better performance (Gradient
Boosted Regression Trees, GBRTs). BNs and ANNs have recently
been used as metamodels for groundwater applications (e.g. Fienen
et al., 2013; Nolan et al., 2012) although GBRT has not, to our
knowledge, previously been applied as a metamodeling technique
for groundwater modeling. ANN and GBRT require a separate
metamodel for each prediction of interest while BN is able to pre-
dict multiple outcomes using a single metamodel.

In the next section, we discuss the generation of the datasets on
which to train the metamodels. Following that, we describe the
three techniques evaluated and then their relative performance in
cross validation, hold out prediction, and filling in unsampled areas.

Filling in unsampled areas shows the power of these techniques in
providing resource managers with information about susceptibility
of streams to stress by nearby groundwater extraction without
needing to run a numerical model. Managers can use this infor-
mation in screening applications for water extraction to rule out
many clear cases and focus their effort on borderline situations for
proposed supply wells, and have a way to focus on those which
potentially could have a substantial effect on surface water flows.

2. Causal relationships and variables

The application and evaluation of the three techniques
described in this work focused on the source of water-to-wells
application described in the introduction section. A sample of
sources of water for 4911 hypothetical wells drawn from the
MODFLOW-USG model makes up the dataset on which meta-
models were built. Each sample includes an instance of each input
variable and each output variable, as defined in Table 1 and
calculated using themethodology outlined in Feinstein et al. (2015).
The input variables were chosen as variables that are expected to
have predictive power for the output of interest. Surface water
features were intersected with a uniform grid with cells 500 ft on a
side in the shallowest model layer. For each sample ”seeded” well,
input distances were calculated from the hypothetical well location
to the nearest grid cell centroid containing a surface water feature
of the type of interest (e.g. first order, second order, or third and
higher orders). Surface water density (e.g. percent surface water) in
the local areawere calculated as the number of grid cells containing
the relevant type of surface water feature divided by the total
number of grid cells in the local area. It is important, at this stage, to
be precise in how we characterize the output of interest. All output
variables involve changes in water budget due to simulation of a
hypothetical ”seeded” well. These budgets are calculated as the
change in flux of surface water features with or without simulation
of seeded wells. More detail on these processes is provided in
Feinstein et al. (2015). Pre-existing wells are present in the simu-
lation, but the goal of our analysis is to quantify potential surface
water impact due to the introduction of a new well. As a result, the
superposition of a base model run (including existing wells) and a
new run (the only changes to the system being the introduction of
new hypothetical well locations) allows for calculation of the in-
cremental impact of the newwells. In this way, we are supporting a
decision-making strategy for managing additional groundwater
extraction, not managing existing extraction.

The general issue laid out above is clearenamely, in temperate
regions, managers acknowledge that groundwater pumping im-
pacts on surface water features is important. However, a range of
terminology can cloud the precise analysis being made. We seek to
quantify “the source of water-to-wells” as the amount of water
pumped by a well that is intercepted discharge or induced
(reversed) flow from a surface water body. We parse the sources
into categories of first, second, or third and higher order streams.
This parsing is important to make the distinction between fragile
(e.g. first order streams) and robust (e.g. third and higher order
streams) ecosystems. This concept is consistent with previous work
on “surfacewater depletion”where themass balance is centered on
the well (e.g. Barlow and Leake, 2012; Leake et al., 2013). Another
perspective would be to evaluate impacts with mass balance
centered on a surface water feature. In that case, we would refer to
“baseflow reduction” which we define as the decrease in baseflow
supplied to a surfacewater feature due to pumping in awell nearby.
This subtle distinction has important ramifications on how a model
is constructed and sampled, and howmetamodels are generated. It
is for these reasons, that in this work we focus on surface water
sources supplying wells (e.g. depletion). This definition must be
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