

Contents lists available at ScienceDirect

Journal of Symbolic Computation

www.elsevier.com/locate/jsc

Birth and death in discrete Morse theory

Journal of Symbolic Computation

Henry King^a, Kevin Knudson^b, Neža Mramor Kosta^{c,1}

^a Department of Mathematics, University of Maryland, College Park, MD 20742, United States

^b Department of Mathematics, University of Florida, Gainesville, FL 32611, United States

^c Department of Computer and Information Science and Institute of Mathematics, Physics, and Mechanics, University of Ljubljana, Slovenia

ARTICLE INFO

Article history: Received 1 October 2015 Accepted 1 March 2016 Available online 25 March 2016

MSC: primary 57Q99, 68U05 secondary 57R70, 58E05, 65D18, 65R99

Keywords: Discrete Morse theory Birth-death point

ABSTRACT

Suppose *M* is a finite cell decomposition of a space *X* and that for $0 = t_0 < t_1 < \cdots < t_r = 1$ we have a discrete Morse function $F_{t_i}: M \to \mathbf{R}$. In this paper, we study the births and deaths of critical cells for the functions F_{t_i} and present an algorithm for pairing the cells that occur in adjacent slices. We first study the case where the cell decomposition of *X* is the same for each t_i , and then generalize to the case where they may differ. This has potential applications in topological data analysis, where one has function values at a sample of points in some region in space at several different times or at different levels in an object.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The purpose of this paper is to study the discrete analogue of the following phenomenon in classical smooth Morse theory. Suppose that N is a smooth manifold and that we have a family of functions $f : N \times I \rightarrow \mathbf{R}$ such that the various $f_t : N \rightarrow \mathbf{R}$ are generically Morse; that is, for almost all t, the function f_t has only nondegenerate critical points. Then as t varies, the critical points of the f_t move around in N. Sometimes a critical point is "born"; that is, a new critical point appears at some time t_0 . At other times, critical points "die". Generically, critical points are born and die in pairs. Such

http://dx.doi.org/10.1016/j.jsc.2016.03.007

E-mail addresses: hck@math.umd.edu (H. King), kknudson@ufl.edu (K. Knudson), neza.mramor@fri.uni-lj.si (N. Mramor Kosta).

¹ Third author partially supported by the Research Agency of Slovenia, grant no. J1-5435.

^{0747-7171/© 2016} Elsevier Ltd. All rights reserved.

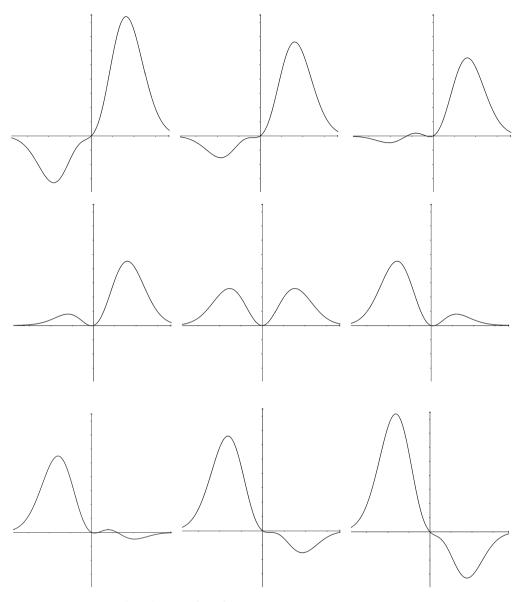


Fig. 1. The curves f(x, t) for t = -3, -2.08, -1.5, -1, 0, 1, 1.5, 2.08, 3.

events are isolated since the critical points of a Morse function are separated; we call such points in $N \times I$ birth-death points.

Consider the following simple example. Let $N = \mathbf{R}$ and consider the family $f : N \times I \to \mathbf{R}$ defined by

$$f(x,t) = e^{-x^2/2} \left(\frac{x^4}{2} - 3tx^3 + 6x^2 - tx \right).$$

Each f_t is a Morse function except for a pair of values $t \approx \pm 2.08$. Fig. 1 shows the graphs of f(x, t) for a few values of t. Note the evolution of the critical points as we pass through various t values. In intermediate stages, we see the appearance of degenerate critical points ($t \approx -2.08$ and $t \approx 2.08$).

Download English Version:

https://daneshyari.com/en/article/570559

Download Persian Version:

https://daneshyari.com/article/570559

Daneshyari.com