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ABSTRACT
BACKGROUND: When studying learning, researchers directly observe only the participants’ choices, which are often
assumed to arise from a unitary learning process. However, a number of separable systems, such as working memory
(WM) and reinforcement learning (RL), contribute simultaneously to human learning. Identifying each system’s con-
tributions is essential for mapping the neural substrates contributing in parallel to behavior; computational modeling
can help to design tasks that allow such a separable identification of processes and infer their contributions in
individuals.
METHODS: We present a new experimental protocol that separately identifies the contributions of RL and WM to
learning, is sensitive to parametric variations in both, and allows us to investigate whether the processes interact.
In experiments 1 and 2, we tested this protocol with healthy young adults (n = 29 and n = 52, respectively). In
experiment 3, we used it to investigate learning deficits in medicated individuals with schizophrenia (n = 49 patients,
n = 32 control subjects).
RESULTS: Experiments 1 and 2 established WM and RL contributions to learning, as evidenced by parametric
modulations of choice by load and delay and reward history, respectively. They also showed interactions between
WM and RL, where RL was enhanced under high WM load. Moreover, we observed a cost of mental effort when
controlling for reinforcement history: participants preferred stimuli they encountered under low WM load. Experiment
3 revealed selective deficits in WM contributions and preserved RL value learning in individuals with schizophrenia
compared with control subjects.
CONCLUSIONS: Computational approaches allow us to disentangle contributions of multiple systems to learning
and, consequently, to further our understanding of psychiatric diseases.
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Multiple neurocognitive systems interact to support various
forms of learning, each with its own strengths and limitations.
As experimenters, we can only observe the net behavioral
outcome of the multifaceted learning process; thus, under-
standing how different systems contribute to learning in par-
allel requires creating experimental designs that can
disentangle their contributions over different learning condi-
tions. Some research has focused on the separable contribu-
tions of goal-directed planning versus stimulus–response habit
formation during sequential multistage reinforcement learning
(RL) (1–6). However, these processes can interact and, more-
over, can themselves be subdivided into multiple systems; for
example, planning involves working memory (WM), accurate
representation of environmental contingencies, guided stra-
tegic search through such contingencies to determine a
desired course of action, and so on.

We have previously shown that, even in simple stimulus–
action–outcome learning situations with minimal demands on
planning and search, there are dissociable contributing pro-
cesses of WM and RL (7,8). We refer to working memory as a
system that actively maintains information (such as the correct
action to take in response to a given stimulus) in the face of
interference (multiple intervening trials). WM is characterized
by the limited availability of this information, due to either
capacity or resource limitation, and decay/forgetting (9–12).
We refer to reinforcement learning as the process that uses
reward prediction errors (RPEs) to incrementally learn
stimulus–response reward values in order to optimize
expected future reward (13). These two systems have largely
been studied in isolation, with WM depending on parietal/
prefrontal cortex function (14–16) and RL relying on phasic
dopaminergic signals conveying RPEs that modulate
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corticostriatal synaptic plasticity (17,18). However, how both
systems jointly contribute to learning, and whether and how
they interact during learning, is currently poorly understood.

We developed an experimental protocol to highlight the role
of WM in tasks typically considered to be under the purview of
model-free RL (7). Specifically, we showed that learning from
reward was affected by set size (the number of stimulus items
presented during a block of trials) and delay (the number of
intervening trials before a participant had a chance to reuse
information). The effects of both load and delay decreased with
repeated presentations, indicating a potential shift from early
reliance on the faster but capacity-limited WM to later domi-
nance of the RL system when associations became habitu-
ated. Our previous work showed that parsing out the
components of learning can identify selective individual dif-
ferences in healthy young adults (7) or deficits in clinical pop-
ulations (8). However, it remained possible in this work that the
paradigm was simply more parametrically sensitive to
demands of WM and comparatively insensitive to the signature
demands of RL. That is, in the deterministic environment, there
was no need to learn precise estimates of reward probabilities
for stimuli or actions.

Here, we present an improved learning task with more
comparable sensitivity across WM and RL systems, providing

firmer ground for their quantitative assessment. The design of
the current task (Figure 1A–C) was motivated by prior modeling
of WM and RL contributions to learning (Figure 1D, E) and
extends our previous design with two new features. First, we
added probabilistic variation in reward magnitudes (1 point vs.
2 points) across stimuli (Figure 1 A, B). Second, we added a
subsequent surprise test phase (Figure 1C), affording the
opportunity to assess whether choices were sensitive to
parametric differences in values learned by RL [e.g., (19–21)].
We anticipated that the combination of these new features
would allow us to investigate RL-based contributions to
learning more directly in addition to the contribution of WM
(Figure 1D). Furthermore, this improved task allows us to
investigate whether WM demands during learning also influ-
ence the degree of value learning (Figure 1E). Such interactions
would motivate refinement of existing computational models,
which assume that RL and WM processes proceed indepen-
dently and compete only for behavioral output (1,7).

To exemplify the utility of this new task in computational
psychiatry research, we administered our new paradigm to
people with schizophrenia (PSZ) and healthy control subjects
(HCs) matched on important demographic variables (Table 1).
The literature remains unclear as to the specific nature of
learning impairments in PSZ (22). Indeed, recent studies
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Figure 1. Experimental protocol. (A) Learning phase. Participants learn to select one of three actions (key presses A1=3) for each stimulus in a block using
reward feedback. Incorrect choices lead to feedback 0, while correct choices lead to reward, either 11 or 12 points, probabilistically. The probability of
obtaining 2 points vs. 1 point is fixed for each stimulus, drawn from the set of (0.2, 0.5, or 0.8). The number of stimuli in a block (set size ns) varies from 1 to 6.
(B) In learning blocks, stimuli are presented individually, randomly intermixed. Delay indicates the number of trials that occurred since the last correct choice for
the current stimulus. (C) During a surprise test phase following learning, participants are asked to choose the more rewarding stimulus among pairs of
previously encountered stimuli without feedback. (D) The computational model assumes that choice during learning comes from two separate systems,
working memory (WM) and reinforcement learning (RL), making behavior sensitive to load, delay, and reward history. In contrast, test performance is
dependent only on RL, such that if RL and WM are independent, choice should depend only on reward history. (E) A total of 100 simulations of the
computational model with the new design for two sets of parameters representing poor WM use (capacity 2) and good WM use (capacity 3), respectively. (Left
panel) Learning curves indicate the proportion of correct trials as a function of the number of encounters with given stimuli in different set sizes. (Middle panel)
Difference in overall proportion of correct choices between subsequent set sizes shows a maximal drop in performance between set sizes 2 and 3 with
capacity 2, while the drop is maximal between set sizes 3 and 4 with capacity 3. (Right panel) Assuming that RL is independent of WM, the learned RL value at
the end of each block is independent of set size (colors) and capacity (top vs. bottom) but is sensitive to the probability of obtaining 1 point vs. 2 points in
correct trials.
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