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ABSTRACT
Biological phenomena arise through interactions between an organism’s intrinsic dynamics and stochastic forces—
random fluctuations due to external inputs, thermal energy, or other exogenous influences. Dynamic processes in the
brain derive from neurophysiology and anatomical connectivity; stochastic effects arise through sensory fluctuations,
brainstem discharges, and random microscopic states such as thermal noise. The dynamic evolution of systems
composed of both dynamic and random effects can be studied with stochastic dynamic models (SDMs). This article,
Part I of a two-part series, offers a primer of SDMs and their application to large-scale neural systems in health and
disease. The companion article, Part II, reviews the application of SDMs to brain disorders. SDMs generate a
distribution of dynamic states, which (we argue) represent ideal candidates for modeling how the brain represents
states of the world. When augmented with variational methods for model inversion, SDMs represent a powerful
means of inferring neuronal dynamics from functional neuroimaging data in health and disease. Together with deeper
theoretical considerations, this work suggests that SDMs will play a unique and influential role in computational
psychiatry, unifying empirical observations with models of perception and behavior.
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Biological organisms balance a tendency toward internal order
and control against the need to preempt and adapt to changing
environments (1). Their functioning reflects a dynamic interplay
of nonlinearity and feedback with stochastic fluctuations: this
exchange of order and entropy yields complexity in its various
guises (2). In the brain, innate dynamics arise from neurophysio-
logical processes such as ion channels and dendritic filtering while
feedback occurs through short- and long-range axonal connec-
tions (3); stochastic inputs arise through sensory fluctuations,
brainstem discharges, and thermal energy (random fluctuations at
the microscopic level, such as Brownian motion of ions). There is
a well-established field devoted to modeling this interplay of
dynamic processes and stochastic effects through a melding of
calculus and statistical physics. The field is anchored by dynamic
equations that govern the temporal (and possibly spatial) behavior
of the system’s state variables. These equations are derived from
the biophysical properties of the system of interest and studied
using analysis and simulation. Because the actual state variables
(such as firing rates) cannot be directly observed in noninvasive
human studies, measurement functions that map neuronal states
onto observables (such as scalp electroencephalography or the
blood oxygen level–dependent [BOLD] signal) are required to
enable empirical predictions. Experimental data then allow models
to be tested, compared, refined, or refuted.

In this review, we introduce the equations that arise at the
intersection of calculus and statistical physics, namely sto-
chastic differential equations (SDEs). These lie at the heart of

stochastic dynamic models (SDMs) of the brain, for which we
offer micro- and mesoscopic examples. We also showcase the
potential of stochastic differential models to unify observations
of functional neuroimaging data with models of behavior. This
forms the background for Part II (4), in which we review
existing applications of SDEs to clinical disorders in neurology
and psychiatry and consider future perspectives.

STOCHASTIC DYNAMIC MODELS OF THE BRAIN: A
BRIEF PRIMER

Stochastic Differential Equations: Fundamentals

We first introduce the modeling of neural systems with SDEs.
Key to this approach is the notion of a system’s state—the
core dynamical variables that describe the system at any
instant in time, such as firing rates, membrane potentials, and
channel conductances. Models describe how states evolve in
time—the dynamics. Given the current state and the dynam-
ical rules of a particular model, it is possible to project
(integrate) the state dynamics forward in time (i.e., solve the
equations). Suppose we model a neuronal system with N state
variables. We can represent these variables as a vector, x 5

[x1, x2, … ,xN], where, for example, x1 is the cell membrane
potential, x2 is the firing rate, and x3 is the conductance of a
particular class of membrane channels. Then, in the absence
of any random fluctuations, the dynamic evolution of the state
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variables obeys a set of ordinary differential equations:

dx1
dt 5 F1 x1 tð Þ ; x2 tð Þ ;…; xN tð Þð Þ;
dx2
dt 5 F2 x1 tð Þ ; x2 tð Þ ;…; xN tð Þð Þ;
⋮
dxN
dt 5 FN x1 tð Þ ; x2 tð Þ ;…; xN tð Þ Þ;�

(1)

where d
dt is the usual differential operator (with respect to time)

and the Fj are functions (possibly nonlinear) that embody the
properties and interactions of the system. These equations
can also be represented in a simpler vector form:

dxi
dt

5 Fi x tð Þð Þ (2)

An example of simple neural dynamics is given by the
Morris-Lecar model (5), a two-dimensional simplification of the
Hodgkin-Huxley equations for the excitable membrane poten-
tial of a neuron. The membrane potential V is determined by
the net current through all transmembrane ion channels (Na1,
K1, Ca21, and leaky currents). The change in membrane
potential at the cell soma is given by the sum of all ion
channel currents plus any current I entering from the dendritic
tree. In the full (four-dimensional) Hodgkin-Huxley model, the
voltages and temporal behavior of all the major ion channels
are modeled explicitly. A reduction to the two-dimensional
Morris-Lecar model is achieved by exploiting the fact that
calcium and sodium channels respond more quickly to
changes in membrane voltage than do slower potassium
channels. This means that the calcium and sodium channels
follow their voltage-dependent conductances instantaneously,
while the potassium channels relax to that value on a slower
time scale—allowing us to focus on the slower dynamics,
which enslave faster dynamics. That is, because the fast
variables reach equilibrium quickly after a perturbation, it is
convenient to treat them as always being at equilibrium, such
that the only remaining dynamics are in the slow variables—
hence, slow variables can be said to enslave fast ones (6). This
is a common device in modeling dynamical systems known
as an adiabatic approximation, which rests on the separation
of time scales. Although widely used, it is of less value
in systems where fast, microscopic fluctuations may drive
slower, coarser subsystems (e.g., in turbulent fluid dynamics).

The dynamical states for the Morris-Lecar model are {V, n},
the membrane potential V, and the proportion of open
potassium ion channels n, which is proportional to the
membrane conductance. The dynamic equations for the
Morris-Lecar model are presented in the Supplement. An
example time series is given in Figure 1A, showing the
characteristic rapid spiking waveform of a suprathreshold cell.
Figure 1B shows the corresponding limit cycle attractor in the
phase space spanned by the dynamical variables {V, n}: The
attractor is color coded to show the direction of the (clock-
wise) flow around the smooth limit cycle attractor.

The equations thus far capture the essence of a neuron that
is kept spiking by a constant dendritic current. However, as
discussed above, neural dynamics inevitably occur in the
presence of noisy fluctuations. In the Morris-Lecar model,
such fluctuations reflect stochastic effects at ion channels,
thermal energy, the uneven distribution of channels in the
membrane, and irregularities in dendritic currents—sources of

so-called neural noise (7). Stochastic effects can be intro-
duced by the addition of a random term to the state equation:

dxi
dt

5 Fi xð Þ1μiηi; (3)

where ηi represents independent zero-mean, unit-variance
Gaussian noise added incrementally at each time point (also
called a Wiener process) and mi is a coefficient that scales the
noise appropriately to each of the variables. Note that while it
is apparently simple to add noise in this way (yielding the
Langevin equation), neither classic calculus nor standard
numerical integration schemes deal with the incorporation of
incremental rough discontinuities in this way. An alternative
way of writing equation 3 is through the use of more formal
SDEs; for the interested reader, we provide the corresponding
SDEs in the Supplement, together with a more formal treat-
ment of stochastic fluctuations.1

Figure 1C and D shows example dynamics from the Morris-
Lecar system with an additive stochastic term. Both the time
series (Figure 1C) and the attractor (Figure 1D) show the impact
of the irregular roughness of the additive noise term. The
roughness is more apparent during the refractory phase of the
firing cycle, but only because the underlying flow is slower during
these periods, allowing more time for the noise to accrue. The
impact of the noise is a relatively modest degradation in the
regularity of the periodicity and amplitude of the spikes.

This is a simple example of an SDM with independent
dynamic and noise terms. The noise acts to perturb the system
as it traverses the limit cycle attractor. However, in many
complex systems, noise does not enter as a simple state-
independent (additive) term. An example is the well-known
coupling between trade volume and volatility in financial markets:
as the amount of trade increases, so do fluctuations in market
value (9). Therefore, in many applications, the noise mixes with
the states as it enters the system, yielding

dxi
dt

5 Fi xð Þ1Gi xð Þηi; (4)

where G is a function that captures the state-dependence of the
stochastic influence. Equation 4 is a generalized Langevin
equation. If G is linear in x and each state mixes with only its
own noise term, we have

dxi
dt

5 Fi xð Þ1μixiηi: (5)

That is, the influence of the noise term is not constant, but
rather scales in proportion to the states x. Fluctuations at
voltage-dependent ion channels are by definition state
dependent. An example of Morris-Lecar dynamics with state
dependent noise is shown in Figure 1E and F. The standout
feature of these panels is the increase in fluctuations in the
subthreshold regime (, –50 mV) compared with the preceding
panels, and the contrasting smoother flow in the fast, supra-
threshold phase (. –20 mV). This noisier subthreshold phase
substantially increases the irregularity of interspike intervals.

1All of the equations in this review, together with an integration
scheme for SDEs (8), can be downloaded in MATLAB form
from http://sng.org.au/Downloads. Python code for integrating
SDEs is also available.
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