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h  i g  h  l  i  g  h  t  s

• The  novel  wavelet-based  phase-coherence  classification  (PCC)  is introduced  in  detail.
• Local  field  potentials  are  split  in  time-frequency  domain  into  three  signal  components.
• Spectra  of  incoherent,  coherent  and  volume  conducted  components  are  analyzed  separately.
• In  Parkinson’s  disease  components  are  differently  modulated  by  medication  and  movement.
• The  PCC  components  may  represent  activity  of  physiologically  different  networks.
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a  b  s  t  r  a  c  t

Background:  Local  field  potentials  (LFP)  reflect  the  integrated  electrophysiological  activity  of  large  neuron
populations  and may  thus  reflect  the dynamics  of  spatially  and functionally  different  networks.
New  method:  We  introduce  the  wavelet-based  phase-coherence  classification  (PCC),  which  separates  LFP
into  volume-conducted,  local  incoherent  and  local  coherent  components.  It allows  to compute  power
spectral  densities  for  each  component  associated  with  local  or remote  electrophysiological  activity.
Results:  We  use  synthetic  time  series  to  estimate  optimal  parameters  for  the  application  to LFP  from  within
the subthalamic  nucleus  of  eight  Parkinson  patients.  With  PCC  we  identify  multiple  local  tremor  clusters
and  quantify  the  relative  power  of local  and  volume-conducted  components.  We  analyze  the  electrophys-
iological  response  to an  apomorphine  injection  during  rest  and  hold.  Here  we  show  medication-induced
significant  decrease  of  incoherent  activity  in  the  low  beta  band  and  increase  of  coherent  activity  in the
high beta  band.  On  medication  significant  movement-induced  changes  occur  in the  high  beta  band  of
the  local  coherent  signal.  It  increases  during  isometric  hold  tasks  and  decreases  during  phasic  wrist
movement.
Comparison  with  existing  methods:  The  power  spectra  of  local PCC  components  is  compared  to  bipolar
recordings.  In  contrast  to  bipolar  recordings  PCC  can  distinguish  local  incoherent  and  coherent  signals.
We  further  compare  our  results  with  classification  based  on  the  imaginary  part  of  coherency  and  the
weighted  phase  lag  index.
Conclusions:  The  low  and high  beta  band  are  more  susceptible  to medication-  and  movement-related
changes  reflected  by incoherent  and  local  coherent  activity,  respectively.  PCC  components  may  thus
reflect  functionally  different  networks.
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1. Introduction

Data obtained from intracranial local field potentials (LFP) using
macroelectrodes of ∼1 mm diameter as well as EEG or MEG  data
generally reflect the integrated electrophysiological activity of pop-
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ulations of neurons at local and remote locations and mostly stem
from post-synaptic potentials (Buzsáki et al., 2012). In order to con-
centrate on local electrophysiological activity one often uses first or
second order derivatives of the measured signal, e.g. bipolar record-
ings or current source-density for LFP (Mitzdorf, 1985; Lempka and
McIntyre, 2013) and average-reference or surface Laplacian for EEG
(Hjorth, 1975; Nunez et al., 1997), which reduce the electrodes’ spa-
tial detection range as a large part of the remotely generated and
volume-conducted signal is subtracted. However, there are some
disadvantages associated to these techniques: (1) for first and espe-
cially for second order derivatives a large number of electrodes is
needed; (2) not only activity generated at distant locations but also
highly correlated and non-phase-shifted locally generated activity
may  be subtracted; and (3) incoherent local activity is spread out
to neighboring electrodes and the volume-conducted signal is lost
to further analyses.

The ability to distinguish between local incoherent and coherent
signals may  help to characterize activity of functionally specialized
networks or neuronal populations (Schnitzler and Gross, 2005).
Such spatial clusters of focal electrophysiological activity may  be
encountered in the target structures of clinical applications, e.g.
deep brain stimulation of the subthalamic nucleus (STN) in case of
Parkinson’s disease (PD). Within the STN pathological activity with
focal topography in the beta band (13–30 Hz) (Brown et al., 2001;
Brown, 2003; Kühn et al., 2004; Kühn et al., 2005; Hammond et al.,
2007) and different topographies of tremor clusters for postural and
rest tremor (Reck et al., 2010) were observed indicating a functional
and patho-anatomical segregation of subloops and symptoms. Fur-
ther, activity within the beta band was reported to be subject to
physiological modulations, e.g. induced by movement (Foffani et al.,
2005; Engel and Fries, 2010), which need to be differentiated from
pathophysiological signals in the same frequency band (Priori et al.,
2004; López-Azcárate, et al., 2010).

In an attempt to allow for such a differential interpretation of
LFP by identifying local (in)coherent and volume-conducted com-
ponents we developed a novel method, namely the wavelet-based
phase-coherence classification (PCC). As the oscillations in LFP are
expected to be dynamic and localized in time-frequency space
(Engel and Fries, 2010; Little et al., 2012; Zavala et al., 2015) the PCC
separates the LFP in time-frequency space according to their pair-
wise statistical characteristics into three components associated
with electrophysiological activity at local and remote locations.
The local signal is further separated into coherent and incoherent
activity. With this approach we can analyze the LFP in more detail
and we hypothesize that the PCC components reflect functionally
segregated networks of electrophysiological activity. Conceptually
similar wavelet-based separation techniques have been shown to
be of great value for the analysis and identification of coherent
vortices in turbulent flows (Farge et al., 2001; Horbury et al., 2008).

The presented technique is not restricted to a certain type of
electrode and is therefore of potential interest for several multi-
electrode configurations. Although we focus here on intracranial
LFP, the PCC can also be used to analyze MEG  and EEG record-
ings. In M/EEG it can identify spurious coherencies caused by
volume-conduction (Nunez et al., 1997) and thus help to determine
functional connectivity of different cortical areas (Hipp et al., 2012).
Furthermore, the PCC is in general also applicable to LFP obtained
from microelectrode arrays such as tetrodes (O’Keefe and Recce,
1993) or Utah arrays (Maynard et al., 1997).

The basic assumption for the application of the PCC is the quasi-
static approximation of the electromagnetic field (Plonsey and
Heppner, 1967; Stinstra and Peters, 1998). Changes in the extra-
cellular potential propagate across the tissue of the human brain
by means of volume-conduction. Therefore, the phase lag of a
volume-conducted signal measured at two different locations is
negligible. As the sources of LFP and EEG can be approximated

as dipoles (Buzsáki et al., 2012; Einevoll et al., 2013), volume-
conducted signals generated at remote locations, i.e. postsynaptic
terminals, can only generate phase differences of either 0◦ or
180◦ between different electrodes. The potential of a dipole source
decreases quadratically with distance so that populations close
to the electrode have considerably stronger effect on the mea-
surement (Lindén et al., 2011). However, large populations with
correlated synaptic input may  generate a volume-conducted sig-
nal strong enough to be observed at several millimeters distance
(Kajikawa and Schroeder, 2011; Lempka and McIntyre, 2013). Note
that in our study the inter-electrode spacing is 2 mm and, therefore,
it is unclear how much of the LFP stems from local activity that is
only observed at a single electrode and how much from remote
activity observed by several electrodes. For the derivation of our
method we make use of the quasi-static approximation and assume
that coherent signals with zero phase difference at two electrodes
are volume-conducted and reflect activity at remote locations (i.e.
distances larger than inter-electrode spacings). Signals observed at
only one electrode and signals with a phase-shift between elec-
trodes are considered to reflect local activity.

In this paper we  introduce the PCC and show how to calculate
power spectral densities for the separate components. We  focus on
the technical aspects of the method, namely its resolution proper-
ties and accuracy to determine the correct power spectral densities
of the components. The resolution of the PCC is analyzed with
synthetic time series and we test the accuracy of the PCC for non-
stationary signals. We  further derive reasonable parameters for its
application to intracranial LFP and apply our method to a data set
of LFP recordings from within the STN of patients with PD. First we
present results obtained from standard analysis procedures (bipo-
lar recordings) and then show that additional information can be
obtained from the application of PCC. Particularly we indicate that
PCC components differently reflect pathophysiological and motor-
state related activity. Finally we  show that the classification in
time-frequency space prior to the separation of components can
also be applied based on other coupling measures such as the imag-
inary part of coherency (IC) (Nolte et al., 2004) or the (weighted)
phase lag index (wPLI) (Stam et al., 2007; Vinck et al., 2011).

2. Materials and methods

2.1. Wavelet transform

The wavelet transform (Farge, 1992; Torrence and Compo, 1998)
of a discrete time series x(tn) with tn being time is defined as

Wx(fi, tj) =
N∑

n=1
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)
, (1)

where N is the number of data points, � the mother wavelet and
s the temporal scale under consideration. Here, we use the Morlet
wavelet with
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where the wavelet parameter ω0 defines the number of oscilla-
tions in the wavelet and thus controls the frequency resolution
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Using the wavelet cross-spectrum

Wxy(f, t) = Wx(f, t) · W∗
y (f, t), (4)
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