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• Left  and  right temporal  lobe  epilepsy  share  a  decreased  convergent  circuit.
• The  circuit  locates  in  prefrontal-limbic  network  and temporo-occipital  network.
• The  circuit  accounts  for  the  mood  and  emotional  deficits  in temporal  lobe  epilepsy.
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a  b  s  t  r  a  c  t

Left  and right  mesial  temporal  lobe  epilepsy  (mTLE)  with hippocampal  sclerosis  (HS) exhibits  similar
functional  and  clinical  dysfunctions,  such  as  depressive  mood  and  emotional  dysregulation,  implying  that
the  left  and  right  mTLE  may  share  a common  network  substrate.  However,  the  convergent  anatomical
network  disruption  between  the  left and  right  HS  remains  largely  uncharacterized.  This  study  aimed  to
investigate  whether  the  left  and  right  mTLE  share  a similar  anatomical  network.

We  examined  43 (22 left, 21  right)  mTLE  patients  with  HS  and  39  healthy  controls  using diffusion  tensor
imaging.  Machine  learning  approaches  were  applied  to extract  the  abnormal  anatomical  connectivity
patterns  in  both  the  left  and right  mTLE.

The left and  right  mTLE  showed  that  28 discriminating  connections  were  exactly  the  same  when  com-
pared  to the  controls.  The  same  28  connections  showed  high  discriminating  power  in  comparisons  of
the  left  mTLE  versus  controls  (91.7%)  and  the right mTLE  versus  controls  (90.0%);  however,  these  con-
nections  failed  to  discriminate  the  left  from  the right  mTLE.  These  discriminating  connections,  which
were  diminished  both  in the  left  and  right  mTLE,  were  primarily  located  in  the  limbic-frontal  network,
partially  agreeing  with  the  limbic-frontal  dysregulation  model  of  depression.

These  findings  suggest  that  left and  right  mTLE  share  a convergent  circuit,  which  may  account  for  the
mood  and  emotional  deficits  in  mTLE  and  may  suggest  the  neuropathological  mechanisms  underlying
the  comorbidity  of  depression  and  mTLE.

© 2016 Published  by  Elsevier  Ireland  Ltd.

1. Introduction

Mesial temporal lobe epilepsy (mTLE) with hippocampal scle-
rosis (HS), which is often associated with cognitive impairment [1],
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has been considered as a focal disease centered on a lateralized
focus for a long time [2]. However, previous magnetic resonance
imaging (MRI) studies have demonstrated widespread abnormali-
ties in various cortical regions and networks [3–6], suggesting that
mTLE is a brain disease that involves network dysfunction [7,8].

Pioneering studies indicated that the left and right mTLE
involved distinct underlying pathological and etiological substrates
[9]. In our last study, we found that the left mTLE could be dis-
tinguished from the right mTLE. However, the left mTLE partly
exhibited a comparable connectivity pattern to the right mTLE
[10]. Furthermore, similar functional connectivity reductions were
found in both left and right mTLE [11]. Left mTLE patients even
exhibit similar clinical dysfunctions to right mTLE patients, such as
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depressive mood, emotional dysregulation, memory deficits [12]
and even major depression [13]. More importantly, some studies
failed to detect significant white matter differences in direct com-
parisons between left and right mTLE [14]. The neuropathology
underlying these phenomena remains unclear. One hypothesis is
that white matter abnormalities reflect a secondary effect of ongo-
ing seizure activity, representing downstream axonal degeneration
[15], such that left and right mTLE may  share a common extra-
temporal network disruption.

In the current study, we investigated whether left and right
mTLE share a common disrupted anatomical network; to address
this question, we aimed to characterize the convergent disrup-
tions of the anatomical networks in left and right mTLE using
machine learning approaches. Whereas mass-univariate methods
consider each individual variable separately, machine learning
approaches take into account patterns of information that may
be presented across multiple variables [16]. Thus, machine learn-
ing approaches may  provide increased sensitivity for extracting
stable patterns from neuroimaging data and for detecting subtle
and spatially distributed differences in the brain [17]. First, we
performed diffusion tensor imaging (DTI) probabilistic tractogra-
phy to extract whole-brain anatomical networks. Then, machine
learning approaches were used to extract the most discriminating
connections and to investigate the convergent anatomical network
disruptions between left and right mTLE.

2. Methods

This study was  approved by the Research Ethics Review Board of
the Institute of Mental Health of Southern Medical University. Each
participant was informed of the details of the project, and written
informed consent was obtained from all participants in accord with
the standards of the Declaration of Helsinki. We  confirmed that all
potential participants who declined to participate or otherwise did
not participate were eligible for treatment (if applicable) and were
not disadvantaged in any way by not participating in this study.

2.1. Participants

We  enrolled 43 consecutive right-handed patients suffering
from unilateral HS and mTLE who received a presurgical evaluation
at the Guangdong 999 Brain Hospital. The diagnosis and lateraliza-
tion of the seizure focus to the left mTLE (n = 22) or the right mTLE
(n = 21) were determined based on a comprehensive evaluation,
including a detailed history, video-EEG telemetry and neuroimag-
ing. An increase in the T2 fluid-attenuated inverted recovery signal
in the hippocampus was used as the diagnostic criterion for HS,
and the site of HS was concordant with the epileptogenic site in
all patients. None of the patients had a mass lesion (including
tumor, vascular malformation or malformations of cortical devel-
opment) or suffered from traumatic brain injury or a psychiatric
disorder, but all patients experienced degeneralized seizures. After
MRI  acquisition, all patients received anterior temporal lobectomy.
Following qualitative histopathological analysis, HS was detected
in all patients. Thirty-nine age-, gender- and education-matched
right-handed healthy control participants were recruited for this
study. The demographic and clinical data are displayed in Table 1.

2.2. Imaging protocol

All participants were scanned using a 1.5 T Philips Intera
MR scanner. During scanning, foam pads were used to reduce
head motion and scanner noise. Diffusion-weighted images were
obtained using a single-shot echo-planar imaging sequence accord-
ing to the following parameters: repetition time (TR) = 11,000 ms;
echo time (TE) = 71.6 ms;  field of view (FOV) = 230 mm × 230 mm;

matrix size = 144 × 144; voxel dimensions = 1.6 × 1.6 × 2 mm;  slice
thickness = 2 mm;  32 non-collinear diffusion directions with a b-
value of 800 s/mm2 and one additional volume without diffusion
weighting (b = 0 s/mm2); and 73 transverse slices without gaps,
covering the entire brain. We  also acquired high-resolution 3D
brain anatomical images using a T1-weighted MP-RAGE sequence
according to the following parameters: TR = 25 ms,  TE = 4.6 ms,
FOV = 240 mm × 240 mm,  matrix size = 256 × 256, and 140 contigu-
ous axial slices with slice thickness = 1 mm.

2.3. DTI data processing

Diffusion tensor images were corrected for distortions caused
by head motion and eddy currents using affine registration in Eddy
Current Correction [18]. Then, the resulting images were brain
extracted using the Brain Extraction Tool [19], and a diffusion ten-
sor model was  fit to each voxel using DTIFit to generate images of
FA and other parameters. Here, we adopted an automated anatom-
ical labeling (AAL) parcellation method to parcellate the cortex into
116 regions of interest (ROIs) [20]. Then, the local probability dis-
tribution of the fiber directions was estimated for each voxel using
BedpostX. We  adopted ProbtrackX for probabilistic tractography,
which tracked fibers between each pair of ROIs by sampling 5000
streamline fibers per voxel using a turning threshold of 60◦. The ROI
associated with node v is denoted as ROI(v). If ROI(v) contained n
voxels, the total number of fibers connecting to ROI(v) was 5000 × n.
Given the number of fibers from ROI(v) to ROI(u) was m,  the connec-
tions between the nodes ROI(v) and ROI(u) were defined as edge e
(v, u) = m

5000×n . The connectivity strength between ROI(v) and ROI(u)

was defined as E (v, u) = e(v, u) + e(u, v)
2 [21].

2.4. Feature selection and classification

We  applied a two-sample t-test to identify the connections that
were significantly different between groups, which were the most
discriminating features. Then, we adopted a locally linear embed-
ding algorithm (LLE) to reduce the feature space dimensionality
to a more manageable level. Finally, a support vector machine
(SVM) with the default Gaussian radial basis function kernel was
applied for classification. Here, we performed two classifications
of left mTLE versus controls and right mTLE versus controls with
whole brain connections. We  extracted exactly the same features
from these two classifications as the convergent features. Two-way
group classifications using the convergent features of the left mTLE,
right mTLE and controls were performed to assess these features.

Because the sample size was limited in this study, we adopted
a leave-one-outcross-validation (LOOCV) strategy to estimate the
generalization rate (GR) of the SVM classifier [17]. One sample was
used as the test sample in one loop of LOOCV, and the remaining
samples were used to train the SVM classifier. First, we adopted
two-sample t test (TSTT) to extract the most significantly differ-
ent features from the remaining samples, then, the features were
projected to a more manageable feature space by Local Linear
Embedding (LLE). At the last, the features were used to train the
SVM and the test sample were used to evaluate the classifier. As
we adopted the LOOCV strategy and there are N sample, we  trained
and tested the classifier N times. The performance of each classifier
was quantified for its Sensitivity (SS), Specificity (SC) and General-
ization Rate (GR) based on the results of LOOCV. The SS indicated the
proportion of patients correctly classified, and the SC represented
the proportion of controls that were correctly classified. The overall
proportion of samples correctly classified was represented by GR.
We applied permutation tests and receiver operating characteris-
tic (ROC) curves to assess the statistical significance of the observed
classification accuracy values.
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