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A B S T R A C T

This paper considers computer-assisted learning of sound spectra in environmental recordings to facilitate
manual bird species identification. Today, a variety of automated methods have been successfully applied for
acoustic recognition of specific bird species. These methods are more effective for single targeted species
detection. For in-field recordings, however, simultaneous vocalisations and unknown species usually make such
methods less effective.

In this study, we propose a non-negative matrix factorisation based method to facilitate manual bird species
identification from environmental recordings. First, distinct sound spectra are extracted from each audio clip by
applying non-negative matrix factorisation and clustering techniques. Based on these distinct sound spectra, a
greedy algorithm is then designed to sample audio clips. Each sampled audio clip maximises the number of new
spectra. People who follow this sampled sequence of audio clips should be able to identify the most species given
a fixed number of audio clips. The efficiency is validated with annotated bird species per minute provided by
experienced ornithologists.

1. Introduction

The deployment of acoustic sensors provides a continuous and less
invasive approach to record environmental sounds at large spatiotem-
poral scales. The availability of acoustic data can be used to monitor
vocal species such as insects and frogs (Brandes et al., 2006), birds
(Acevedo et al., 2009), and bats (Russo and Voigt, 2016). Among these
species, birds have been widely recognised as good indicators of
biodiversity because they can rapidly reflect environmental changes,
they spread over a large landscape, and their ethology is well under-
stood.

A ubiquitous characteristic of bird vocalisations is their diversity.
On one hand, inter-specific vocalisations diverge in time and frequency
(Michat and Osiejuk, 2010); on the other hand, intra-specific vocalisa-
tions vary depending on locations, temperature, or vegetation of a
particular landscape (Kosicki and Chylarecki, 2012). A low signal-to-
noise ratio of environmental recordings also makes automated detec-
tion difficult. In this context, the signal refers to bird vocalisation that is
of interest while the noise refers to any unwanted sound such as
geophony (rain or wind) and anthropophony (mechanical sounds).
Additionally, simultaneous bird vocalisations pose another challenging
problem (Briggs et al., 2012).

Despite the acoustic complexity of environmental recordings, hu-

man beings are able to differentiate a variety of bird vocalisations by
listening to recordings and visually inspecting the spectrograms.
Manual analysis can quickly become intractable due to the escalating
volume of recordings. An efficient alternative is the use of automated
techniques to analyse the recordings. These techniques start with
creating statistical models based on the mappings between instances
and pre-defined labels. Once the models are created, incoming un-
labelled instances can be automatically associated with the pre-defined
labels.

Bird species richness is one of the most important studies for
biodiversity assessment (Kosicki and Chylarecki, 2014). It is a study
of the number of unique bird species in a specific habitat within a
specific period of time. We aim with this paper to develop an automated
technique to enhance the efficiency of bird species richness surveys
with environmental recordings. The problem is formulated as this:
given a one-day recording with non-targeted multiple species inven-
tories, identify the maximum number of unique bird species while
listening to the minimum number of one-minute audio clips. We
specifically focus on audio clips of one day because bird species
compositions are relatively stable within this time frame in a specific
habitat.
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1.1. Automated bird classification

Classifying bird species by their vocalisations lends itself to rapid
analysis of environmental recordings. A typical classification system
consists of two primary processes: feature extraction and classification
algorithms (Brandes, 2008). Feature extraction is one of, if not the
most, crucial steps in such a system. It utilises a value or a vector to
represent bird vocalisations in a recording. A prevalent form of feature
extraction is the spectrogram, which is a result of using the short-time
Fourier transform to convert a waveform into multiple spectra. Mel-
frequency cepstral coefficients (Kogan and Margoliash, 1998) is one of
the most commonly used approaches to summarise bird vocalisations
from spectrograms. It is developed to capture human speech, but is not
necessarily suitable for bird vocalisations. Other feature extraction
methods include sinusoidal pulses with time-varying amplitude and
frequency (Harma, 2003), spectral peak tracks (Chen and Maher,
2006), and syllable pair histograms (Somervuo and Harma, 2004).
They have been used individually or in combination for bird vocalisa-
tion representations. These features do well in capturing specific types
of bird vocalisations; however, to achieve this goal, people should know
in advance what types of bird vocalisations are in the recordings.

The classification algorithms are about using statistical criteria to
map extracted features with some pre-defined labels. Multivariate
analysis (Martindale, 1980) and cross correlation (Clark et al., 1987)
are the simplest two algorithms to match similar bird vocalisation with
templates, but they are prone to errors. More advanced algorithms
include artificial neural network (McIlraith and Card, 1997), hidden
Markov models (Kogan and Margoliash, 1998), decision tree (Vilches
et al., 2006), and support vector machine (Fagerlund, 2007). These
algorithms have been successfully applied to deal with specific sets of
bird vocalisations. Multiple simultaneous bird vocalisations remain a
difficult problem for automated species identification. Recently, a
multi-instance multi-label classification method has been proposed to
tackle the problem of simultaneous vocalisations in environmental
recordings (Briggs et al., 2012). This method is a supervised method
that requires massive training data.

Automated classification techniques offer a promising approach for
bird species analysis, especially when people are confronted with a
large number of recordings. However, acquiring a labelled dataset for
statistical model generation is sometimes laborious and expensive. For
bird species richness surveys, one might not be able to know what
species are in the recordings beforehand. This paper aims to develop an
approach to ameliorate such difficulty by automatically extracting
distinct vocalisations from audio recordings. These vocalisations can
further be used as a proxy to direct bird species richness surveys.

1.2. Non-negative matrix factorisation

Non-negative matrix factorisation (Lee and Seung, 1999) can decom-
pose a matrix into a product of two matrices. The felicity of such
decomposition is it enables to generate a parts-based representation,
enabling to characterise distinct bird vocalisations of a spectrogram
automatically. Since its inception, non-negative matrix factorisation has
seen a broad range of applications, including multiple sound sources
separation (Smaragdis, 2004; Zhang et al., 2008), music transcription
(Bertin et al., 2007), and gene data expression (Frigyesi and Höglund,
2008; Hutchins et al., 2008). Recently, probabilistic latent component
analysis (PLCA) – a probabilistic variant of non-negative matrix
factorisation has been proposed for the analysis of soundscape ecology
(Eldridge et al., 2016). This paper also motivates our work.

Non-negative matrix factorisation is described as follows. Given a
matrix S of size n × m, it can be represented by the multiplication of
two non-negative matrices W and H:

S W H≈ ⋅ (1)

where the matrix W has a size of n × r and the matrix H has a size of

r × m. Here, r is called the factorisation rank, affecting the performance
of the approximation.

The approximation is achieved by minimising a cost function that
measures approximation error. One of the cost functions is:
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where D is the root-mean-squared (RMS) residual. The subscript ‘F’
denotes the Frobenius norm. Let aij be an element of matrix S–W⋯H, the
Frobenius norm is calculated as:
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The algorithm is iterative starting with random initial values for
matrices W and H. During the iteration, the matrices W and H are
updated using the following equations:
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The key parameter in Eqs. (4) and (5) is factorisation rank r, which
determines the size of matricesW and H. Other variants of non-negative
matrix factorisation algorithm differ in the non-negativity constraints
on the matrix W, the matrix H, or both (Hoyer, 2004; Pascual-Montano
et al., 2006; Tao et al., 2002). A simple example of non-negative matrix
factorisation on a spectrogram can be found in this paper (Smaragdis,
2004). Generally, the columns of the matrix W denote the distinct
spectral profiles and the rows of the matrix H denote the corresponding
temporal coefficients of each spectral profile.

This paper aims to develop a sampling technique to facilitate
manual bird species identification in environmental audio recordings.
The difficulty in developing a sampling technique lies in the accurate
detection of bird vocalisations by computers. However, most ap-
proaches require prior knowledge of different types of bird vocalisa-
tions, which is not practical when the size of recording is large. Non-
negative matrix factorisation offers a potential solution to such a
problem.

2. Methods

The general process of our method is described as follows. First, we
apply the non-negative matrix factorisation to decompose spectrograms
into spectral profile matrices and temporal coefficient matrices. A
hierarchical clustering technique is then used to generate distinct
spectra of bird vocalisations from the decomposed matrices. Finally,
audio clips are sampled in a sequence with the maximum number of
new distinct spectral profiles. Following this sampled sequence of audio
clips, people should be able to find the most bird species given a fixed
number of audio clips.

2.1. Estimating the factorisation rank

The most crucial issue in this study is to determine a proper
factorisation rank r for the non-negative matrix factorisation. There is
no uniform r for the non-negative matrix factorisation due to the
inherent complexity of environmental recordings. A common solution is
to optimise the factorisation performance by increasing r (Brunet et al.,
2004; Hutchins et al., 2008).

This work follows an adaptive method proposed by Frigyesi and
Höglund (2008) to determine the factorisation rank r based on the
acoustic complexity of each recording. For two consecutive factorisa-
tion rank r − 1 and r, we calculate the decreases of root-mean-squared
(RMS) residual for the original spectrogram (ΔDo) and its randomised
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