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a  b  s  t  r  a  c  t

Previously  we  have  proposed  a  continuous  model  of  soil  organic  matter  (SOM)  transformation  which
was  based  on  describing  only  the  most  general  notions  of this  process  –  a gradual  increase  in  SOM
stability  toward  transformation,  occurring  concurrently  with  partial  decomposition  of  SOM. The  model
provided  qualitative  description  of vertical  SOM  distributions  in  different  soils.  In the  present  study  this
model  has  been  modified  to make  the  description  more  realistic.  The  study  demonstrates  quantitative
correspondence  between  the  calculated  and  averaged  observed  vertical  distributions  of  SOM  for  different
biomes.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In a previous study, we proposed a simple continuous model of
SOM transformation and decomposition (Bartsev and Pochekutov,
2015). That model was based on the most general notions of these
processes: a gradual increase in the stability of SOM toward trans-
formation, which occurs simultaneously with decomposition of
some part of SOM. The continuous scale of stability of the mat-
ter used in the basic model was the rate of further transformation
of SOM into more stable forms. Then, we proposed a modified
model, which established a one-to-one correspondence between
the stationary SOM distributions along the transformation rate and
along the depth in soil profile. For that model, we  demonstrated
qualitative correspondence of the patterns of SOM vertical distri-
bution curves to those for various types of real soils (Bartsev and
Pochekutov, 2016).

Although derivation of model equations in the previous papers
(Bartsev and Pochekutov, 2015, 2016) was described in terms of the
classical theory of humification (Essington, 2004), the model can be
used within the framework of both this theory and any other SOM
transformation concepts that suggest a gradual increase in SOM
stability toward transformation and decomposition. These are the
concepts suggesting, e.g., an increase in SOM stability caused by an
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increase in its inaccessibility and protection against decomposers
(von Lützow et al., 2006) or even by an increase in the proportion
of stable compounds in the plant litter due to more rapid mineral-
ization of readily mineralized substances (Berg and McClaughrety,
2008). The reason why  this model is so universal is that it has been
constructed using a very simple approach, which involves a phe-
nomenological representation of the most general notions about
the nature and direction of SOM transformation process, providing
no details or internal mechanisms of these processes, which would
connect the model to certain theoretical notions of organic matter
transformation in soil.

2. The model equations and their new modification

2.1. The transformation equations

The basic equation of the model (Bartsev and Pochekutov, 2015):

∂C(h, t)
∂t

− ∂
∂h

(
h2C(h, t)

)
= −k(h)C(h, t) + D(h, t) (1)

describes SOM transformation as movement of the matter along a
continuous scale representing the degrees of stability of the mat-
ter toward further transformation (including decomposition). The
rate of SOM transformation into a more stable form is used as this
scale, h. In terms of the classical theory of humification, h means
the rate of humification of the matter. C(h, t) is SOM distribution
along scale h, changing over time; k(h) is coefficient of mineraliza-
tion rate, assigned in the existing versions of the model from the
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empirical function k(h) = bhp, where b and p are adjustable parame-
ters (interpreted elsewhere (Bartsev and Pochekutov, 2016)). Plant
litter is described by its input rate D(h, t), which is defined in the
model from an approximate equation

D(h) =
∑

i

D0iı(h − h0i), (2)

where ı is the Dirac delta function, and index i numbers plant litter
components characterized by their annual average amount D0i and
initial transformation rate h0i.

When plant litter input is defined by (2), Eq. (1) can be written for
Ci(h, t) – the distribution of transformation products of each litter
component. Then, the distribution of the total SOM is expressed as
C(h, t) =

∑
iCi(h, t).

In the stationary case, solution of Eq. (1) written for Ci(h, t) has
the following form:

C̄i(h) = D0i

h2
exp

(
b

p − 1
(hp−1 − hp−1

0i
)
)(

1 − �(h − h0i)
)

, (3)

where � is the Heaviside step function.
In this study, in order to bring the model concepts closer to

the notions of the nature of soil processes, we propose a modified
model, which assumes that not all matter in the soil simultaneously
undergoes transformation.

In any stage of transformation of the matter, only some part of
this matter undergoes transformation at any given time. If reactions
of both decomposition and transition to a more stable form are
described by the laws of chemical kinetics, at any moment there is a
part of the matter that has entered into the reaction and a part of the
matter that has not. Then, Eq. (1) only describes the dynamics of the
part of the matter that undergoes transformation at a given time.
Moreover, for reasons described in a review by von Lützow et al.
(2006) some of the SOM may  become inaccessible to the effects of
biological or chemical factors causing transformation of the matter.

Without going into great detail, we can describe the total result
of the operation of these mechanisms in a generalized way as fol-
lows. The part of the SOM that is undergoing transformation at a
given time will be called active SOM, and its distribution will be
denoted by c(h, t). The other part of the SOM, which is not under-
going transformation at the same time, will be called inactive SOM,
and its distribution will be denoted by s(h, t). The distribution of
the total SOM will be expressed as C(h, t) = c(h, t) + s(h, t). Assum-
ing that the rate of transition of the matter from the active state
to the inactive one can be expressed as ˇ(h)c(h, t) and the rate of
transition of the matter from the inactive state to the active one
as ˛(h)s(h, t), we obtain a system of equations describing the total
SOM dynamics in both forms:

∂c(h, t)
∂t

− ∂
∂h

(
h2c (h, t)

)
= −bhpc (h, t) + D (h, t) − ˇ (h) c (h, t)

+ ˛ (h) s (h, t) ; (4)

∂s(h, t)
∂t

= ˇ(h)c(h, t) − ˛(h)s(h, t). (5)

In the stationary case, ˇ(h)c̄(h) = ˛(h)s̄(h), and (4) will assume
the form that fully coincides with the stationary form of Eq. (1),
and, hence, the solution of this equation will have the form of (3).
Then, the total stationary distribution of SOM will be

C̄(h) =
(

1 + ˇ(h)
˛(h)

)
c̄(h). (6)

Let us assume that ˇ(h) and ˛(h) can be approximated by the
simplest linear functions, ˇ(h) = qh,  ˛(h) = rh,  where q and r are

positive constants. Then, the distribution of the products of trans-
formation of the ith litter component will take the following form:

C̄i(h) =
(

1 + q

r

)
D0i

h2
exp

(
b

p − 1
(hp−1 − hp−1

0i
)
)(

1 − �(h − h0i)
)

.(7)

In this modification of the model, only one new parameter, q/r, is
introduced into the equations. This parameter denotes how many
times the amount of inactive SOM is different from the amount of
active SOM.

2.2. The vertical transport equations

In order to establish one-to-one correspondence between the
stationary SOM distributions along the transformation rate h and
along the depth z in soil profile, one should assign w(h) ≡ dz/dt.
The equation of relation between scales h and z that we  derived
previously (Bartsev and Pochekutov, 2016, Eq. (9)), in the general
case for the arbitrary w(h) form, will be written as

dh

dz
= − h2

w(h)
. (8)

The stationary distribution of SOM along the scale z, C̄(z), will
be related to the stationary distribution of SOM along the scale h,
C̄(h), by the equation

C̄(z) = J · C̄(h(z)), (9)

where J ≡ − dh/dz is transition Jacobian from scale h to scale z
(Bartsev and Pochekutov, 2016).

While previously (Bartsev and Pochekutov, 2016) we assumed
w(h) = ah,  we  now assume

w(h) = ah + A, (10)

where a and A are nonnegative constants. Thus, for any substance,
its vertical transport velocity, w, consists of two components: one
component is determined by the stability of the substance and the
other is the same for all substances in the soil. This also brings model
concepts closer to processes in real soils. Summand A is added to
take into account possible vertical transport factors that affect par-
ticles of the matter irrespective of its degree of transformation,
such as transport of particles with the liquid when large amounts
of water percolate through the soil.

By solving the differential Eq. (8) taking into account (10) and
initial condition h(z = 0) = h0i, we obtain a new expression of the
relation between scales z and h:

z = a log
(

h0i

h

)
+ A

(
1
h

− 1
h0i

)
. (11)

The function h(z) necessary for further computations can only be
obtained from this by numerically solving the transcendental Eq.
(11) relative to h. For each plant litter component that differs from
other components in the h0i value, function h(z) must be calculated
individually, using this very value of h0i.

As follows from (8) and (10), Jacobian J in Eq. (9) assumes the
form (h2(z))/(ah(z) + A). Then Eq. (9), taking into account (7) for
products of transformation of the ith component of plant litter will
be written as

C̄i(z) = (1 + q
r )D0i

ah(z) + A
exp(

b

p − 1
(hp−1(z) − hp−1

0i
))�(z). (12)

Eq. (12) holds for products of transformation of plant litter
components falling onto soil surface such as aboveground parts
of plants. To make an accurate description of the root litter, one
should take into account that roots and, hence, root litter are dis-
tributed over depth along the soil profile. To take into account the
depth-distributed input of the root litter, one must know its dis-
tribution function, DR(z, h). In the simple case, if all root litter is
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