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A B S T R A C T

Many species of conservation interest exist solely or largely in isolated populations. Ideally, prioritization of
management actions among such populations would be guided by quantitative estimates of extinction risk, but
conventional methods of demographic population viability analysis (PVA) model each population separately and
require temporally extensive datasets that are rarely available in practice. We introduce a general class of sta-
tistical PVA that can be applied to many populations at once, which we term multiple population viability
analysis or MPVA. The approach combines models of abundance at multiple spatial locations with temporal
models of population dynamics, effectively borrowing information from more data-rich populations to inform
inferences for data-poor populations. Covariates are used to explain population variability in space and time.
Using Bayesian analysis, we illustrate the method with a dataset of Lahontan cutthroat trout (Oncorhynchus
clarkii henshawi) observations that previously had been analyzed with conventional PVA. We find that MPVA
predictions are similar in bias and higher in precision than predictions from simple PVA models that treat each
population individually; moreover, the use of covariates in MPVA allows for predictions in minimally-sampled
and unsampled populations. The basic MPVA model can be extended in multiple ways, such as by linking to a
sampling and observation model to provide a full accounting of uncertainty. We conclude that the approach has
great potential to expand the use of PVA for species that exist in multiple, isolated populations.

1. Introduction

Perhaps the single most interesting and important question in con-
servation biology is: “why do some small populations decline to ex-
tinction while others persist?” If this question could be reliably ad-
dressed for species of interest, managers would have the information
necessary to strategically focus actions on populations most at risk.
Conservation theory and empirical observations have produced rules of
thumb on the minimum number of individuals (Frankham et al., 2014;
Franklin, 1980; Traill et al., 2007) or minimum habitat extent (e.g.,
Hilderbrand and Kershner, 2000; Robbins et al., 1989) required for a
viable population, but there are numerous examples of populations that
defy these rules (Peterson et al., 2014; Shoemaker et al., 2013).
Smallness alone is an insufficient predictor of risk; it is also critical to
understand the factors that correlate with population declines and
stochasticity, and thus extinction (Caughley, 1994).

A holistic understanding of the causes of population declines, and

ultimately the processes contributing to extinction of small populations,
is particularly important for species in highly fragmented habitats
(Fagan and Holmes, 2006; Gilpin and Soule, 1986) — a category that
covers many imperiled species of conservation interest. Examples in-
clude the island fox (Urocyon littoralis) in the Channel Islands
(Kohlmann et al., 2005), “mountain island” species such as pika
(Ochotona spp.; Beever et al., 2003), and water-associated species in
arid landscapes (Kodric-Brown and Brown, 1993). For such species, the
relative viability of individual populations is of fundamental concern to
managers who must make hard decisions regarding the allocation of
limited resources to prevent population and species extinctions. Ideally,
such decisions would be guided by data-driven estimates of extinction
probabilities under alternative scenarios of management action (or in-
action) and varying environmental conditions, such as future climates.

Population viability analysis (PVA) is a class of analytical ap-
proaches that yields probabilistic estimates of population viability (or
extinction) over specified time horizons (Beissinger and McCullough,
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2002; Morris and Doak, 2002). However, traditional PVAs require
temporally extensive demographic data (e.g. survival, reproduction,
and maturation rates), and have generally been limited to populations
that have been the focus of long-term monitoring programs. Such da-
tasets are unusual for imperiled species, and it is particularly rare to
have long-term data for every population of interest, which is required
to evaluate relative risk and to target management actions effectively.
Some traditional PVA approaches also require data from marked and
tracked individuals; such data are generally expensive to collect.

One alternative is to use a species distribution modeling approach
(Elith and Leathwick, 2009) or abundance modeling approach (e.g.,
Royle, 2004) to identify spatial or spatiotemporal environmental cov-
ariates to explain presence or abundance. These covariates allow pro-
jection of occurrence or abundance across broad geographies and under
alternative management and climate conditions. However, they gen-
erally do not consider temporal population dynamics or density de-
pendence, and are often made at the scale of the sampling unit rather
than the full population. Thus, as typically employed they cannot
provide estimates of population viability.

2. A multiple population viability model

We propose that statistical methods of modeling presences or
abundances in space can be married with statistical time-series models
of populations to provide a data-driven approach to population viability
analysis that can be applied to many populations simultaneously. The
method has four defining characteristics:

1. Some population parameters are shared among populations. One or
more of these parameters are influenced by covariates that vary in
space and in time (or both) so they can be used to describe spatial
differences among populations as well as temporal fluctuations
within populations.

2. Populations are modeled as autoregressive, meaning that abundance
at one point in time depends in part on the abundance in a previous
time step, as in a traditional PVA. A mechanism to account for
density dependence should be included in most cases.

3. Modeling is at the scale of the full population, not the sampling unit.
Counts must either be scaled to the full population before modeling,
or (better yet) scaled to the full population during modeling via an
observation model and a sampling model directly linked to a process
model.

4. As a statistical method it is driven by empirical data, which sets it
apart from simulation-based methods that usually rely on a mix of
literature values and expert opinion.

Previously introduced methodologies have incorporated some of
these characteristics, but we know of no published approaches with all
four. Clark and Bjørnstad (2004) introduced Bayesian methods to fit
flexible state-space time series models that could account for hidden
states, missing values, observation errors and other complexities, but
applied them to only one population at a time. Zipkin et al. (2014) used
a Bayesian modeling framework to extend the open N-mixture model
(Dail and Madsen, 2011) to account for stage-structured time series
population data. Kanno et al. (2015) further developed this to model
abundance at multiple locations with density dependence as a function
of climate covariates, but analysis was at the scale of the sampling unit
rather than full populations, and the focus was not on viability.

We build on these antecedents to introduce a simple Bayesian
multiple population viability analysis process model, or MPVA. While
previous studies (Berliner, 1996; Clark and Bjørnstad, 2004; Staples
et al., 2004; Zipkin et al., 2014) have emphasized the importance of
linking population models to observation models to remove bias asso-
ciated with incomplete detection, for the sake of simple exposition we
focus here on the process model. We discuss methods for linking to
observation and sampling models later.

To develop the model we assume a dataset collected from multiple
isolated populations p, at least some of which have been sampled at
sequential time steps t. Because our focus is on the process model, we
assume that the population estimate for each population at each sam-
pling occasion Npt is known without error. We assume at least one
covariate Xpt with a value corresponding to each sampling occasion. A
traditional way to analyze such a dataset might be to use Poisson re-
gression in a generalized linear modeling framework:

N Poisson N~ ( )pt pt (1)

= +log N β β X( )pt pt0 1 (2)

Such a model would probably not meet assumptions, as repeat
samples of individual populations would not be independent. This
could be corrected by including a random intercept for population
identity, making it a multilevel model (Gelman and Hill, 2007;
Raudenbush and Bryk, 2002). Alternatively, one could make the model
explicitly autoregressive by making the population at the current time
step dependent on the previous time step:

= + +−log N log N β β X( ) ( )pt pt pt1 0 1 (3)

The above applies to Npt-1 > 0, as the outcome Npt = 0 is de-
terministic when Npt-1 = 0; this caveat also applies to all subsequent
forms of this equation. Eq. (3) is simply an exponential growth model
where the intrinsic population growth rate r is a linear function of
covariate X. It can be rewritten as:

= +−log N log N r( ) ( )pt pt pt1 (4)

= +r β β Xpt pt0 1 (5)

While valid, the model lacks a term for density dependence, which
means that populations are unbounded and could grow exponentially to
infinity in projections.

One can solve this with a simple density dependence term:

⎜ ⎟= + ⎛
⎝

− ⎞
⎠

−
−log N log N r

N
K

( ) ( ) 1pt pt pt
pt

p
1

1

(6)

This is now a form of the Ricker model (Ricker, 1954) in which the
realized population growth rate approaches the intrinsic growth rate rpt
when populations are small, but declines as populations approach
carrying capacity Kp. We chose the Ricker model because it is simple, it
has been widely used in both theoretical and applied ecology (May,
1974; Clark, 2007; Morris and Doak, 2002; Dail and Madsen, 2011;
Kanno et al., 2015), and it has a linear form amenable to covariates on
rates of recruitment and density-dependent mortality (Hobbs and
Hooten, 2015). However, many other formulations are possible; the
Gompertz model in particular has been shown to have desirable prop-
erties (Dennis and Taper, 1994). In our example Kp is indexed by po-
pulation, indicating that each population has a unique carrying capa-
city that is constant through time. Carrying capacity could be allowed
to vary temporally as a function of covariates, but we have found that
when both r and K are allowed to vary spatio-temporally, the model can
suffer identifiability issues (i.e. there are multiple optima).

A solution is to reformulate the Ricker equation using the term phi
(φ) to represent r/K, the strength of density dependence (Hobbs and
Hooten, 2015). One can include spatio-temporal covariates on both r
and φ:

= + −− −log N log N r φ N( ) ( )pt pt pt pt pt1 1 (7)

= +r β β Xpt pt0 1 (8)

= +φ γ γ Xpt pt0 1 (9)

In this formulation, φ represents the reduction in population growth
rate associated with adding a single individual to last year's population,
and will be a small positive number—generally much< 1 but> 0. The
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