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Linear wave solutions in the spectral space are analyzed to help understand the structure of mountain waves.
Nonrotating and hydrostatic waves generated in wind with directional shear past a circular bell-shaped moun-
tain are studied. The power spectra of perturbed vertical velocity and pressure are symmetrically distributed
about the orientation of dominant wave component, which bisects the angle between surface wind and local
wind directions. The maximum power spectrum increases with the horizontal wind speed but decreases with
the wind turning angle. The power spectra of potential temperature and horizontal velocity exhibit an asymmet-
ric distribution except at the surface,which are infinite for thewave components normal to themeanwind. These
large-amplitude perturbations of potential temperature and horizontal velocity are advected downstream and
thewaves finally break, giving rise to the occurrence of turbulent wakes at various heights. All thewavefields ro-
tate with height in the same direction of the mean wind. However, the perturbed vertical velocity and pressure
turn at a rate slower than that of horizontal velocity and potential temperature. The application of spectral anal-
ysis to the wave momentum flux is discussed, which helps explain the misalignment of wave momentum flux
with the surface wind.
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1. Introduction

Orographic gravity waves (OGWs) are excited as stably stratified
flows interact with mountains on the earth. OGWs are capable of verti-
cally transporting momentum from their source (i.e., orography) to the
upper atmosphere, thus exerting an important influence on the meso-
spheric general circulation (Holton, 1983). Mountain wave activities
are also intimately related to many weather phenomena, some of
which may cause casualties. For example, the breaking of OGWs is an
importance source of clear air turbulence which threatens the safety
of aviation. Wildfire may be induced in the leeside of high mountains
through the well-known foehn effect (Smith, 1985).

In the theoretical studies of OGWs, thewave equation is often solved
in the spectral space, which is an ordinary differential equation. The
spectral solution is then remapped to the physical space to examine
the mountain wave structure. For example, Smith (1980) investigated
the structure of nonrotating hydrostatic waves generated in constant
wind over a three-dimensional (3D) circular bell-shaped mountain.
While the remapping of spectral wave solution to the physical space of-
fers many advantages, it has shortcomings as well. The remapped

solution in the physical space often contains integrals that cannot be
represented by elementary functions. As a result, theymust be comput-
ed numerically (e.g., Teixeira andMiranda, 2006; Xu et al., 2012, hereaf-
ter XWX12). It is not easy to understand the underlying physics
according to complex integral expressions.

Since the physical solution can be viewed as a superposition of
different Fourier harmonics, it is natural to study the spectral solution
directly, i.e., spectral analysis. This spectral perspective has been
adopted in the study of gravity wave momentum flux (WMF), which
is closely related to theparameterization of gravitywave drag innumer-
ical models (Kim et al., 2003). For instance, McFarlane (1987) parame-
terized the orographic WMF using a single wave along the surface
wind direction. In contrast, Hines (1988) found that it wasmore appro-
priate to represent the WMF from isotropic terrain using two waves
rather than a single one. By analyzing the WMF spectrum at the cloud
top, Song and Chun (2005) developed a spectral parameterization
scheme for non-orographic gravity wave drag.

In thiswork, themountainwave structure generated in directionally
sheared winds past a circular bell-shaped mountain is studied as an ex-
ample from the spectral perspective. This kind of flow has already been
investigated by Shutts (1998) through a combination of ray-tracing and
stationary-phase methods. The wavefield was found to broaden with
height, similar to the constant wind case (Smith, 1980). Moreover, as
the ambient wind turns with height, the wavefield also rotates in the
same direction as the wind but at a relatively slower rate. The presence
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of directional wind shear causes a number of selective critical levels, at
which the horizontal wave vector is normal to the local mean wind
(Broad, 1995; Shutts, 1995).Mountainwaves are advected downstream
onmeeting the selective critical levels, whichfinally break and in conse-
quence produce turbulentwakes at various altitudes (Broad, 1999). The
stationary-phase ray solution in Shutts (1998) has a simple form with
no integral. Yet it is only valid far away from the wave source (i.e.,
mountain). In view of this, the Maslov's method was suggested in
Broutman et al. (2002), which can avoid the ray-solution singularity di-
rectly above the terrain. However, theMaslov solution consists of an in-
tegral expression. As will be shown in this study, the OGW structural
features can be readily understood from the viewpoint of spectral
analysis.

The rest of this paper is organized as follows. Section 2 derives the
spectral wave solutions for hydrostatic nonrotating mountain waves
generated in directional wind varying linearly with height. The spectral
solutions are analyzed in Section 3 for a particular case of circular bell-
shaped mountain. The application of spectral analysis to the WMF is
presented in Section 4. Finally, Section 5 summarizes this paper with
discussions.

2. Linear wave solution

According to the theory of two-dimensional (2D) Fourier trans-
forms, the vertical velocity in the spectral space is

ŵ k; l; zð Þ ¼ 2πð Þ−2 ∫
þ∞

−∞
∫
þ∞

−∞
w x; y; zð Þ exp −i kxþ lyð Þ½ �dxdy; ð1Þ

where K= (k, l) is the horizontal wave vector, andw(x, y, z) is the ver-
tical velocity in the physical domain. Under the assumption of steady,
adiabatic, inviscid, nonrotating, hydrostatic, and Boussinesq flow, the
governing equation of spectral vertical velocity is given by (cf. Eq. (9)
of XWX12),

ŵzzzþm zð Þ2ŵ ¼ 0; ð2Þ

wherem2 ¼ N2K2=D̂ðzÞ2 is the squared vertical wave number, K= |K |,

N is the Brunt-Väisälä frequency, and D̂ðzÞ ¼ VðzÞ � K. (Hereafter, the
subscript represents partial derivative unless otherwise stated or de-
fined.) In deriving the above equation, the horizontally uniform mean
wind is assumed to vary linearly with height, i.e.,

V zð Þ ¼ U0 þ Uzz;V0 þ Vzzð Þ ¼jV zð Þj cosψ zð Þ; sinψ zð Þð Þ; ð3Þ

where V0= (U0, V0) is the surfacewind, Vz=(Uz, Vz) the vertical shear,
and ψ (z) is the azimuth of V(z). By virtue of the Frobeniusmethod (e.g.,
Booker and Bretherton, 1967), the analytical solution of the wave equa-
tion is (see XWX12)
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where φ is the azimuth of K, namely, K = K(cosφ, sinφ), D̂0 ¼ V0 � K,
D̂z ¼ Vz � K, sgn(·) is the sign function, Ri = N2/|Vz |2 is the mean flow
Richardson number, and χ0 is the azimuth of wind vertical shear. At

the lower boundary, it satisfies the free-slip condition ŵðk; l;0Þ ¼ iD̂0

ĥ, where ĥ ¼ ĥðK;φÞ is the 2D Fourier transform of themountain h(x, y).
Note that wave transmission above critical levels is excluded by assum-
ing that gravitywaves are totally absorbed at critical levels in the case of
large Richardson numbers (Booker and Bretherton, 1967).

Once the vertical velocity is obtained, one can readily derive other
wave variables, such as horizontal velocity, pressure, and potential tem-
perature
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whereρ is the reference density, and θ(z) is the base-sate potential tem-
perature. These equations give the relative phases and amplitudes of
different wave quantities, known as polarization relation (see
Appendix A).

3. Results

3.1. Spectral analysis

In accordancewith Eqs. (5)–(8), the power spectra of perturbed ver-
tical velocity, pressure, potential temperature, and horizontal velocity
are given by,

jŵ K;φ; zð Þj2 ¼ jV0jjV zð Þj cos φ−ψ0ð Þ cos φ−ψ zð Þ½ �K2
���ĥj2; ð9Þ
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�����ŵ K;φ; zð Þj2; ð10Þ

jθ̂ K;φ; zð Þj2 ¼ ∂θ
∂z

 !2
D̂o

D̂ zð Þ
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jû K;φ; zð Þj2 ¼ jVzj2 D̂o
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jû K;φ; zð Þj2 ¼ jVzj2 D̂o
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To facilitate the spectral analysis, we use a circular bell-shaped orog-
raphy, i.e.,

h x; yð Þ ¼ hm 1þ x=rað Þ2 þ y=rað Þ2
h i−3=2

; ð14Þ

where hm and ra are the mountain height and half width, respectively.
(It should be noted that the results obtained below are valid for any axi-
symmetricmountain.) The spectrum of the isotropic bell-shapedmoun-
tain only depends on the horizontal wave vector magnitude

ĥ Kð Þ¼ 2πð Þ−1hma
2e−raK : ð15Þ

In this case, the partial derivative of jŵj2 with respect to φ (namely,
the orientation of horizontal wave vector) is

∂
∂φ

jŵ K;φ; zð Þ2
� �

¼ −
���V0jjV zð ÞjK2jĥj2sin2 2φ−ψ0−ψ zð Þ½ �: ð16Þ

Evidently, Eq. (16) equals to zero at

φmax zð Þ ¼ ψ0 þ ψ zð Þ½ �=2; ð17Þ
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