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A B S T R A C T

Sea surface salinity (SSS) is an important parameter to characterize physical and biogeochemical processes, yet
its remote estimation in coastal waters has been difficult because satellite sensors designed to “measure” SSS lack
sufficient resolution and coverage, and higher-resolution ocean color measurements suffer from optical and
biogeochemical complexity when used to estimate SSS. In the northern Gulf of Mexico (GOM), this challenge is
addressed through modeling, validation, and extensive tests in contrasting environments. Specifically, using
extensive SSS datasets collected by many groups spanning> 10 years and MODIS (Moderate Resolution Imaging
Spectroradiometer) and SeaWiFS (Sea-Viewing Wide Field-of-View Sensor) estimated remote sensing reflectance
(Rrs) at 412, 443, 488 (490), 555, and 667 (670) nm and sea surface temperature (SST), a multilayer perceptron
neural network-based (MPNN) SSS model has been developed and validated with a spatial resolution of ~1 km.
The MPNN was selected over many other empirical approaches such as principle component analysis (PCA),
multi-nonlinear regression (MNR), decision tree, random forest, and supporting vector machines (SVMs) after
extensive evaluations. The MPNN was trained by a back-propagation learning technique with Levenberg-
Marquardt optimization and Bayesian regularization. The model showed an overall performance of root mean
square error (RMSE) = 1.2, with coefficient of determination (R2) = 0.86, mean bias (MB) = 0.0, and mean
ratio (MR) = 1.0 for SSS ranging between ~1 and ~37 (N = 3640). Validation using an independent dataset
showed a RMSE of 1.1, MB of 0.0, and MR of 1.0 for SSS ranging between ~27 and ~37 (N= 412). The model
with its original parameterization has been tested in the Mississippi-Atchafalaya coastal region, Florida's Big
Bend region, and in the offshore Mississippi River plume, with satisfactory performance obtained in each case.
Comparison with concurrent Aquarius-derived SSS maps (110-km resolution) showed similar agreement in
offshore waters as indicated above, but the new 1-km resolution SSS maps revealed more finer-scale features as
well as salinity gradients in coastal waters. The sensitivity of the model to realistic model input errors in satellite-
derived SST and Rrs was also thoroughly examined, with uncertainties in the model-derived SSS being al-
ways< 1 for SSS > 30. The extensive validation, evaluation, and sensitivity test all indicated the robustness of
the MPNN model in estimating SSS in most, if not all, coastal waters and offshore plumes in the northern GOM.
Thus, the model provided a basis for generating near real-time 1-km resolution SSS maps from satellite mea-
surements. However, the model showed limitations when applied to regions with known algal blooms or up-
welling as they both led to low Rrs in the blue bands that may be falsely recognized as caused by low SSS.

1. Introduction

1.1. Challenge in mapping sea surface salinity of coastal waters

Sea surface salinity (SSS) is an important parameter in under-
standing many physical and biogeochemical processes in coastal waters
(Fennel et al., 2011; Xue et al., 2013). SSS data is used in support of
studies examining the mixing between riverine freshwater and offshore
oceanic water and changes in other water properties (Hu et al., 2004;

Palacios et al., 2009; Devlin et al., 2015; Horner-Devine et al., 2015;
Yang et al., 2015). Further, SSS is an important parameter in tracing the
pathway of the riverine-delivered terrestrial substance (e.g. organic and
inorganic carbon, nutrients) into the ocean, as well as examining the
intensity of stratification and studying variations in water's optical
properties, hypoxia, and algal blooms in coastal margins (Rabalais
et al., 1996, 2002; Cannizzaro et al., 2013; Weisberg et al., 2014;
O'Connor et al., 2016; Le et al., 2016).

However, obtaining SSS at synoptic scales with frequent coverage in
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coastal waters has proved difficult due to inadequate ship-based mea-
surements (that lack of appropriate resolutions) or failures in satellite
SSS measurement algorithms. The two existing satellite sensors, based
on microwave remote sensing and designed to “measure” SSS from
space, are the ESA SMOS (the Soil Moisture and Ocean Salinity) and
NASA Aquarius/SAC-D. Yet the coarse spatial resolution (30–100 km)
and low revisit frequency (3 days or more), along with the issue of land
contamination, limit their use in observing the dynamic variations in
SSS in coastal waters (Koblinsky et al., 2003; Lagerloef et al., 2008; Font
et al., 2010; Kerr et al., 2010).

Recent advances in ocean color remote sensing have shown poten-
tials in synoptic and frequent mapping of SSS (Wong et al., 2007; Ahn
et al., 2008; Palacios et al., 2009; Marghany and Hashim, 2011;
Urquhart et al., 2012; Bai et al., 2013; Geiger et al., 2013; Qing et al.,
2013; Vandermeulen et al., 2014; Zhao et al., 2017). In these studies,
SSS was modeled from apparent optical properties (AOPs) such as
spectral remote sensing reflectance (Rrs, sr−1), inherent optical prop-
erties (IOPs) such as absorption coefficient, or other satellite parameters
such as Sea Surface Temperature (SST, °C) and chlorophyll-a con-
centrations (CHL, mg m−3). Regardless of the method, the underlying
principle is that colored dissolved organic matter (CDOM) is a good
tracer of SSS in coastal oceans (Vodacek et al., 1997; Hu et al., 2003;
Coble et al., 2004; Del Vecchio and Blough, 2004), and CDOM ab-
sorption coefficient (aCDOM, m−1) can be, at least in theory, estimated
from ocean color measurements and then used to estimate SSS as-
suming conservative mixing for both (e.g., Siddorn et al., 2001;
Johnson et al., 2003; Chen and Gardner, 2004; Hong et al., 2005; Guo
et al., 2007; Bowers and Brett, 2008). Indeed, in river-dominated
coastal regions, CDOM mainly comes from terrestrial inputs through
river discharges and non-point source land runoff (Chester, 1990;
Nelson et al., 2007). This plays a key role in determining the optical
properties (especially Rrs) of coastal ocean waters. However, due to the
distinct CDOM characteristics of each local river endmember and its
seasonality, the relationship between aCDOM and SSS may vary in space
and time (Chen, 1999; Hu et al., 2003; Del Vecchio and Blough, 2004;
Bowers and Brett, 2008; Bai et al., 2013; Geiger et al., 2013), making it
impossible to apply a locally designed SSS algorithm to other regions.
Adding to this difficulty are the uncertainties in the satellite-retrieved
Rrs and aCDOM; these uncertainties can cause a well-established, ship-
based aCDOM – SSS relationship to become unreliable. Such difficulties
can be clearly seen from Fig. S1 in the supplemental materials for the
northern Gulf of Mexico when satellite-derived aCDOM was used to es-
timate SSS. Thus, in general, mapping SSS in coastal waters from space
still represents a major challenge for the ocean color research com-
munity.

1.2. Study region and objectives

The study region is the northern Gulf of Mexico (GOM) that receives
discharge from numerous rivers. The Mississippi River provides the
largest river discharge into northern GOM. Ranking as the world's 8th
largest river in freshwater discharge and sediment delivery, the
Mississippi River system drains 41% of the land in the United States
(Milliman and Meade, 1983). About 70% of the river's flow drains
through the lower Mississippi River into the GOM, with the remaining
30% delivered to the Atchafalaya basin, and finally into the GOM (U. S.
Army Corps of Engineers, 2008) forming the Mississippi/Atchafalaya
River system (MARS). In addition to the MARS, there are some smaller
rivers along the coast of the northern GOM, such as Suwannee, Pen-
sacola, and Apalachicola Rivers; these also play significant roles in af-
fecting the coastal water properties (Mattraw and Elder, 1984; Averett
et al., 1994; Murrell et al., 2002). With large seasonal loadings of
freshwater, inorganic and organic matters, and nutrients, from the
MARS and other rivers, the northern GOM maintains an active eco-
system with dynamic physical and biogeochemical processes. Here, SSS
plays an important role in the physical mixing between the MARS and

GOM open waters (Xue et al., 2013), the hypoxia phenomenon induced
by intensified biological activities and vertical stratification (Wiseman
et al., 1997; Rabalais et al., 2002), and the distribution and variation of
the carbonate properties such as total alkalinity (TA) and surface partial
pressure of CO2 (pCO2) (Yang et al., 2015; Chen et al., 2016).

Synoptic SSS estimation in the northern GOM has been attempted in
several published studies. Using data from SMOS and Aquarius,
Fournier et al. (2016) examined the seasonal and interannual variations
of SSS in the GOM. However, the study was limited by the coarse spatial
resolution (30–100 km) and lack of coverage in coastal waters as a
result of sensor limitations. Based on total absorption coefficients at 486
and 551 nm derived from the SNPP-VIIRS (Suomi National Polar-or-
biting Partnership satellite with the Visual Infrared Imaging Radiometer
Suite) measurements and SSS measurements from several nearshore
stations, Vandermeulen et al. (2014) developed a simple SSS model
using linear regression between SSS and absorption difference. Due to
the dynamics and complexity of the northern GOM, only 65% of the
data tested with the model showed a SSS uncertainty of ≤2; one pos-
sibility for this result is that the relationship between absorption dif-
ference and SSS may change in space and time. Indeed, although linear
relationships between SSS and aCDOM have been developed on a re-
gional basis (Blough et al., 1993; Ahn et al., 2008; Palacios et al., 2009;
Bai et al., 2013), in the northern GOM the SSS-aCDOM relationship ap-
pears to be different in several studies (Hu et al., 2003; Del Castillo and
Miller, 2008; Lohrenz et al., 2010). Such discrepancies indicate that
unlike SSS, CDOMmay not follow conservative mixing, and both CDOM
production from phytoplankton degradation (Nelson et al., 1998, 2010;
Twardowski and Donaghay, 2001; Stedmon and Markager, 2005) and
CDOM photochemical bleaching (Chen and Gardner, 2004) may con-
tribute to the variations in the SSS-aCDOM relationship (Del Vecchio and
Blough, 2004). Consequently, to date there has been no reliable model
to estimate SSS from ocean color measurements in this region.

Extensive SSS data have been collected from the northern GOM by
numerous groups and agencies. Acknowledging the limitations of SMOS
and Aquarius, lack of reliable ocean color-based SSS models, the un-
stable SSS-aCDOM relationship in the northern GOM, and high un-
certainties in satellite-derived aCDOM (Hu et al., 2003; Le and Hu, 2013;
Mannino et al., 2014), the goal of the present study is to address the
challenge of mapping SSS from ocean color measurements over the
optically complex northern GOM, with the following specific objectives:

1) Develop a relatively robust model to estimate SSS at 1-km resolution
from ocean color measurements;

2) Quantify uncertainties in the estimated SSS through extensive eva-
luations under various oceanographic conditions (e.g., Mississippi-
Atchafalaya coastal region, Florida's Big Bend, and Mississippi River
plume) and through sensitivity studies;

3) Understand the limitations of this approach in order to determine its
applicability to time-series data.

The paper is structured as follows. Field and satellite data are pre-
sented first, and optical characteristics of the waters with different SSS
ranges are analyzed. Secondly, methods in developing SSS models are
briefly reviewed. Finally, in the Results and Discussion sections, the
trained SSS model is statistically validated and evaluated under dif-
ferent conditions, with model sensitivities to the model inputs analyzed
and model limitations investigated.

2. Data and methods

2.1. Datasets

2.1.1. Field data
To assure enough spatial and temporal coverage under all possible

oceanographic conditions and measurement scenarios, we compiled all
publically available SSS data collected over the past 20 years in the
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