
Effects of temporally external auxiliary data on model-based inference

ZhengyangHou a,b,⁎, Qing Xu b,c, Ronald E.McRoberts d, Jonathan A. Greenberg b, Jinxiu Liu e, JanneHeiskanen e,
Sari Pitkänen a, Petteri Packalen a

a University of Eastern Finland, Faculty of Science and Forestry, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland
b University of Nevada, Reno, Natural Resources & Environmental Science, Reno, NV 89667, United States
c University of Illinois at Urbana-Champaign, Department of Geography and Geographic Information Science, IL 61801, United States
d Northern Research Station, U.S. Forest Service, Saint Paul, MN, United States
e University of Helsinki, Department of Geosciences and Geography, P.O. Box 64, FI-00014 Helsinki, Finland.

a b s t r a c ta r t i c l e i n f o

Article history:
Received 16 February 2017
Received in revised form 21 May 2017
Accepted 7 June 2017
Available online xxxx

One of the benefits of model-based inference relative to design-based inference is that probability samples are
not required which means that models can be constructed using data external to the area of interest. Although
“external” usually means spatially or geographically external, it could also be used in the temporal sense that
the model is constructed using data whose dates are temporally external to the dates of the data to which the
model is applied. This study focuses on assessing the effects of such temporally external application data on
model-based inference using remotely sensed auxiliary information. The study area was in Burkina Faso, and
the variable of interest was firewood volume (m3/ha). A sample of 160 field plots was selected from the popula-
tion and measured, and auxiliary datasets from Landsat 8 were acquired. Models were fit using weighted least
squares; the population mean, μ, was estimated; and the variance of the population mean,Varðμ̂Þ, was estimated

using both an analytical variance estimator, V̂ðμ̂Þan, and an empirical bootstrap estimator,Vðμ̂Þboot. The estimates,

μ̂ anddVarðμ̂Þ, were compared for models constructed using calibration and application data of the same date and
models constructed using calibration and application data whose dates differed. The primary results were two-

fold. First, for cases for which the dates of the model calibration and application data were the same, μ̂ , V̂ðμ̂Þan,
Vðμ̂Þboot and dBiasðμ̂Þ were similar across datasets. These results suggest that the particular date of the dataset
from which the calibration and application data are obtained may be mostly arbitrary assuming the relation be-
tween the dependent and independent variables does not change over time. Second, for a model for which the

calibration and application data were obtained from temporally different datasets, V̂ðμ̂Þan, Vðμ̂Þboot , and dBiasðμ̂Þ
were all greater thanwhen the calibration and application data were not temporally different. Further, the crite-

rion for screening candidatemodelsmust be based on estimation of μ̂ anddVarðμ̂Þrather than themodel prediction
accuracy or goodness of fit. The adverse effects of differing dates for the calibration and application data were ex-
acerbated as the difference in dates increased. Finally, because the temporal differences also affected the analyt-
ical variance calculation, the bootstrapping procedure is recommended.

© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

When multiple sets of remotely sensed auxiliary data are available
for modeling a forest attribute, which set to select? The term model
here refers to the combination of the mathematical expression
representing the relationship between a dependent and independent
variables, the selected independent variables, and the parameter esti-
mates. Because different datasets often lead to different models, which

model to choose? Should the criterion be goodness of fit as expressed
by R2, the prediction accuracy as expressed by RMSE, or confidence in-
terval widths for the population parameter estimates? How robust is
the estimation when the dates for values of the independent variables
used for applying a model differ from the dates of the data used to con-
struct the model? These sampling questions can be properly evaluated
in the context of model-based inference.

In forestry, a spatial area of interest can be tessellated by smaller
units of a given size that then serve as population units. The population
parameters of interest are usually the population total (τ) ormean (μ) of
the forest attribute, and development of estimators for these parame-
ters is a common topic of sampling theory. The desired properties of
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an estimator are with respect to the sampling distribution of estimates,
and are primarily unbiasedness and small variance (Hou et al., 2015).
Forest inventories rely heavily on sampling theory and have been
established and conducted in many developed countries. Common
practice is to conduct these inventories usingfield surveys based on spe-
cific probabilistic sampling designs that support estimators with suffi-
cient precision. This design-based inference relies on sample sizes that
are sufficiently large that the central limit theorem can be invoked to
ensure the desired properties. Design-based inference is free from as-
sumptions regarding the structure and distribution of the population,
because it is based on the distribution of all possible estimates permis-
sible under the strict terms of the sampling design (Cochran, 1977).
However, a large sample consisting entirely of field measurements fol-
lowing a probabilistic design is apt to become unaffordable and less
cost-efficient, whereas a reduced sample size risks failure to satisfy pre-
cision criteria. This dilemma could introduce a serious economic burden
on developing countries andwould hinder them from implementing re-
petitive inventories to update the status of forest resources regularly as
is required today (MEDD, 2012).

Inventories enhanced by remotely sensed data have become in-
creasingly popular. In particular, remotely sensed auxiliary data that
are correlated with forest attributes facilitate use of model-based infer-
ence. Distinct from design-based inference, model-based inference re-
lies on a model as the basis for constructing inferences in the form of
confidence intervals for the population parameters (Cassel et al.,
1977). The finite population is regarded as a realization of a random
process called a superpopulation, and every finite population is seen
as a sample of the infinite superpopulation (Särndal, 1978). This
superpopulation is characterized as infinite because it refers to the dis-
tribution of all possible values for each unit in the finite population
(McRoberts, 2010). The superpopulation is defined by the
superpopulationmodelwherein the remotely sensed auxiliary informa-
tion enters as independent variables. The model here refers to the esti-
mated superpopulation model of a given form according to prior
knowledge, andmodel parameters are estimated using sample data col-
lected from the finite population. The true superpopulation model pa-
rameters are the only fixed values, whereas the estimated model
parameters are random variables contingent on the collected sample.
Properties of a model-based population parameter estimator are de-
duced conditionally with respect to the observed sample and the stipu-
lated model, not the sampling design.

The importance of properly dealing with uncertainty was explicitly
advocated by the Intergovernmental Panel on Climate Change in its
good practice guidance for greenhouse gas reporting (IPCC, 2006). In
some instances, however, it remains unclear how uncertainty assess-
ments should be conducted. For example, McRoberts (2011) demon-
strated that maps, accuracy assessments, and models do not directly
produce inferences. A major concern with model-based inference is
the potential for serious bias in the population parameter estimator if
the presumed or stipulated model is misspecified (Gregoire, 1998).
Many studies have focused on selection of estimators and sampling de-
signs that are robust with regard to model misspecification, particularly
for linear models (e.g. Breidenbach et al., 2014; Chambers and Clark,
2012;McRoberts, 2010; Saarela et al., 2015; Valliant et al., 2000). Dating
back to early days, various methods such as designing the sample to be
balanced in terms of independent variables (Royall and Herson, 1973a,
1973b) have been proposed to enhance inferential robustness despite
model misspecification. Nowadays, requirements for statistically rigor-
ous uncertainty estimates are steadily increasing (Gregoire et al.,
2016), particularly when there are multiple sources of uncertainty.

One of the benefits of model-based inference relative to design-
based inference is that probability samples are not required. Thus,
models can be constructed using data external to the area of interest
(McRoberts et al., 2014). Although the term external usually means spa-
tially or geographically external, it can also be used in the temporal
sense that the model is constructed using data whose dates are

temporally external to the dates of the application data. McRoberts et
al. (2016a) considered a similar problem for design-based inference,
but to our knowledge the problem of temporal externality has not
been considered for model-based inference. Standard regression theory
assumes that model predictor variables are observed without error
(Gregoire and Valentine, 2008), and that if measurement errors and
model-related errors cannot be ignored, uncertainty estimates such as
variancewill be underestimated (Särndal et al., 1992). Therefore, the ef-
fects of temporal differences betweenmodel calibration and application
data can be pernicious.

Consequently, the aims of the study were twofold: (1) to evaluate

and compare how μ̂ anddVarðμ̂Þvarywhen temporally different remotely
sensed data are used for constructing and applying a model; and (2) to
summarize rules of thumb that help to reduce the uncertainty caused by
an arbitrary selection of dates of auxiliary data. The forest attribute of in-
terest is firewood volume (m3/ha), the main commercial product ob-
tained from the forests in the Burkina Faso study area.

2. Materials

2.1. Study area

The study area is situated in the rural commune of Kou in south-
eastern Burkina Faso (11°45′N, 1°57′W) (Fig. 1, left). The topography
is a plain with low relief and mean elevation of 350 m above sea level.
The soil has a sandy clay texture and mainly consists of plinthosols
with a subsurface accumulation of plinthite with small nutrient content
(Jonsson et al., 1999). The mean annual precipitation is 790 mm/year,
and the mean annual temperature 28 °C. The climate is semi-arid and
bimodal (Peel et al., 2007). The monsoonal rainy season lasts seven
months fromApril to October and accounts for 80% of the annual precip-
itation received, whereas the dry spell season covers the rest of a year
(Nicholson, 2009).

Controlled fires are common in the study area (Fig. 2) and are
intended to promote a fresh growth of grass for the grazing herds, to
make the wildlife more visible for the tourists, and to prevent more de-
structive wildfires later (Gessner et al., 2015). However, although the
grasses and shrubs are burnt to ash, the fires do not usually cause per-
manent land cover changes because most trees survive and the burnt
vegetation recovers quickly (Sawadogo et al., 2002). Four fire seasons
have been distinguished, the pre-early season in October, the early sea-
son in November and December, the late season in January and Febru-
ary, and the post-late season in March and April (Gessner et al., 2015).

2.2. Field data

A sampling design proposed by the Land Degradation Surveillance
Framework (Vågen et al., 2013) (Fig. 1, right) was used to locate 160
sample plots. Field data were collected between late November 2013
and early February 2014 for the primary purpose of supporting model
construction. To cover the range of variation of the variables in the pop-
ulation, the sampling design divided the study area into 16 regular tiles,
and in each tile 10 sample plots were randomly selected andmeasured.
The plots were circular, with a radius of 17.84 m and area of 0.1 ha. The
mean distance between plot centers was 218.2 m, thus avoiding prob-
lems associated with spatial autocorrelation among plot observations.
Plot centers were geo-referenced with Global Navigation Satellite Sys-
tem receivers with a real-time accuracy of 60 cm supported by free cor-
rections of Satellite-Based Augmentation Systems based on European
Geostationary Navigation Overlay Service.

Plot-level firewood volume (m3/ha) was obtained from fallen or
standing deadwood and living trees by selecting the woody material
that was not rotten and was usable as fuelwood, and computing the to-
tals per hectare by aggregation. Because specific allometric models for
particular tree species volume were not available, a general model for
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