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a b s t r a c t 

The emergence of drug-resistance is a major challenge in chemotherapy. In this paper we develop a 

mathematical model to study the dynamics of drug-resistance in solid tumors. Our model follows the 

dynamics of the tumor, assuming that the cancer cell population depends on a phenotype variable that 

corresponds to the resistance level to a cytotoxic drug. The equation for the tumor density is written 

as a reaction-diffusion equation with a pressure term that depends on the local cell density. The model 

incorporates the dynamics of nutrients and two different types of drugs: a cytotoxic drug, which directly 

impacts the death rate of the cancer cells, and a cytostatic drug that reduces the proliferation rate. This 

model successfully integrates the phenotype structured drug-resistance approach with an asymmetric 

tumor growth model in space. Through analysis and simulations we study the impact of spatial and phe- 

notypic heterogeneity on the tumor growth under chemotherapy. We demonstrate that heterogeneous 

cancer cells may emerge due to the selection dynamics of the environment. Our model predicts that un- 

der certain conditions, multiple resistant traits emerge at different locations within the tumor. We show 

that a higher dosage of the cytotoxic drug may delay a relapse, yet, when this happens, a more resistant 

trait emerges. Moreover, we estimate the expansion rate of the tumor boundary as well as the time of 

relapse, in terms of the resistance trait, the level of the nutrient, and the drug concentration. Finally, we 

propose an efficient drug schedule aiming at minimizing the growth rate of the most resistant trait. By 

combining the cytotoxic and cytostatic drugs, we demonstrate that the resistant cells can be eliminated. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

Drug-resistance to chemotherapy is a key obstacle to successful 

cancer treatments. The biological mechanisms responsible for the 

emergence of drug resistance and its propagation have been exten- 

sively studied ( Gillet and Gottesman, 2010; Teicher, 2006 ). Those 

mechanisms involve genetic and/or epigenetic alternations that al- 

low cancer cells to evade one or more drugs ( Fodal et al., 2011; 

Gottesman, 2002; Gottesman et al., 2002 ). In addition, the local 

tumor environment, including the availability of nutrients and re- 

duced absorption or metabolism of drugs, provides opportunities 

for resistant cells to evolve ( Gerlinger et al., 2012; Panetta, 1998; 

Rainey and Travisano, 1998 ). The complex dynamics of the under- 

lying mechanisms has encouraged the development of mathemat- 

ical models for describing the emergence and evolution of drug 
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resistance. Such models were used for improving early detection, 

quantifying intrinsic and acquired resistance cells, and designing 

therapeutic protocols ( Foo and Michor, 2014; Lavi et al., 2012; Mi- 

chor et al., 2006; Roose et al., 2007; Swierniak et al., 2009 ). These 

approaches pave a way towards a better understanding of clinical 

studies and experimental observations by assisting to decipher the 

complex mechanisms that control the dynamics of cancer under 

therapy. 

A variety of modeling strategies have been developed to char- 

acterize tumor growth and the dynamics of drug resistance. The 

models range from deterministic to stochastic and from discrete 

to continuum models. Discrete models include cellular automata 

( Anderson, 2005; Mallett and De Pillis, 2006 ) and agent-based 

modeling (e.g., Mansury et al., 2002 ). Such models simulate in- 

dividual cells, whose states are updated based on a given set of 

rules. Generally, it is straightforward to formulate the biological 

processes corresponding to tumor invasion and resistance dynam- 

ics as a discrete model. Unfortunately, such models suffer from the 

lack of analytical tools that can be used to analyze their properties, 

and the computational costs rapidly increase with an increased 
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number of agents (cells). In larger-scale systems, continuum meth- 

ods are good modeling alternatives. Such models include, e.g., or- 

dinary differential equations ( Birkhead et al., 1987; Tomasetti and 

Levy, 2010 ), partial differential equations ( Anderson and Chaplain, 

1998; Trédan et al., 2007; Wu et al., 2013 ), and integro-differential 

equations ( Greene et al., 2014; Lorz et al., 2013 ). 

Models based on partial differential equations have been ex- 

tensively used to model cancer growth in space and time (see, 

e.g., Bellomo et al., 2003; Byrne et al., 2006; Cristini et al., 2008; 

Lowengrub et al., 2010 and the references therein). Initial model- 

ing approaches were mostly based on reaction diffusion systems 

to describe the interaction between malignant and healthy cells 

( Gatenby and Gawlinski, 1996; Greenspan, 1976 ). Many extensions 

were proposed to include the contribution of proteolytic enzymes, 

stress-induced limitations, cell adhesion, microenvironment, and 

vascularization ( Anderson, 2005; Byrne et al., 2006; Cristini et al., 

2003; Deakin and Chaplain, 2013; Macklin and Lowengrub, 2007; 

Zheng et al., 2005 ). 

The simplest spatial models of tumor growth assume radial 

symmetry. Linear and weakly nonlinear analyses have been per- 

formed to assess the stability of spherical tumors to asymmetric 

perturbations ( Byrne et al., 2006 ). An extension to a fully asym- 

metric growth has been done by regarding the local tissue in- 

vasion of a tumor as a free moving boundary problem. To trace 

the boundary, various numerical techniques have been developed, 

e.g., boundary integral methods ( Cristini et al., 2003 ) and advanced 

level-set methods ( Macklin and Lowengrub, 2007 ), in which the 

nutrients are coupled with a pressure equation and a geometry- 

dependent jump boundary conditions. This approach was used to 

successfully study the effects of shape instabilities on both avas- 

cular and vascular solid tumor growth ( Byrne and Chaplain, 1996; 

Cristini et al., 2003; Macklin and Lowengrub, 2007; Macklin et al., 

2009 ). However, the cell pressure in these models is governed by 

the nutrients and the geometry without considering the competi- 

tion for space that is an important factor in cancer invasion ( Brú

et al., 2003 ). 

As a consequence, the concept of homeostatic pressure , denot- 

ing the lower pressure that prevents cell multiplication by con- 

tact inhibition, motivated a new generation of models ( Byrne and 

Drasdo, 2009 ). For example, the porous medium equation was 

used in Perthame et al. (2014) and Kim et al. (2016) . Multi- 

phase mixture models based on the theory of mixtures were pro- 

posed in Chaplain et al. (2006) , Mcmaster et al. (2012) , Byrne and 

Preziosi (2003) and Preziosi and Tosin (2009) . In particular, 

Perthame et al. (2014) used the porous medium equation to bridge 

the free boundary models that mostly describe the geometric mo- 

tion of the tumor with cell population density models. 

In parallel to developing models of tumor growth, modeling 

drug resistance in cancer, took a central role following the seminal 

works of Goldie and Coldman (1979, 1983a, 1983b) . The Goldie and 

Coldman models that were based on resistance due to point mu- 

tations, were extended to multi-drug resistance and optimal con- 

trol of drug scheduling ( Iwasa et al., 2006; Kimmel et al., 1998; 

Komarova, 2006; Michor et al., 2006 ). Recent studies emphasize 

the importance of the tumor microenvironment as a driving force 

for drug resistance ( de Bruin et al., 2013; Gerlinger et al., 2012 ). 

Modeling the spatial dependency becomes more significant due 

to limited perfusion capability of large molecules and the differ- 

ences in drug exposure based on their distance from the capillary 

bed ( Minchinton and Tannock, 2006; Trédan et al., 2007; Vaupel 

and Kallinowski, 1989 ). Once spatially heterogeneous populations 

appear, they can also modulate the absorption and metabolism 

of the nutrients and drugs, which further promotes heterogeneity. 

Thus, various spatiotemporal models have been developed aiming 

at understanding the tumor morphology and phenotypic evolution 

driven by selective pressure from the microenvironment ( Anderson 

et al., 2006; Panagiotopoulou et al., 2010; Trédan et al., 2007; Wu 

et al., 2013 ). 

In this paper, we develop a solid tumor growth model that de- 

scribes the dynamics of drug resistance. The model considers a 

continuous trait variable that represents the level of cytotoxic drug 

resistance ( Cho and Levy, 2017; Greene et al., 2014; Lorz et al., 

2015; 2013 ), which agrees with recent cytometry data analysis that 

reveals continuum phenotypic spaces ( Amir et al., 2013; Bendall 

et al., 2011; Grover et al., 2016 ). This allows us to study the se- 

lection dynamics under microenvironmental constraints, and the 

response to cytotoxic and cytostatic drugs. The present model ex- 

tends the framework of Lorz et al. (2013) , Lorz et al. (2015) and 

Cho and Levy (2017) that was restricted to a radially symmetric 

and fixed boundary by constantly normalizing the radius. We al- 

low the tumor boundary to take a time dependent asymmetric 

shape. To model such moving boundary, we incorporate a home- 

ostatic pressure driven growth, given by the porous medium equa- 

tion ( Perthame et al., 2014 ). The growth term is generalized to in- 

corporate the resistance trait. 

The paper is organized as follows. In Section 2 , the model in- 

volving the tumor concentration and the microenvironment vari- 

ables is introduced with biological assumptions. In Section 3 we 

use our model to analytically and numerically study the rate of 

the tumor growth. The time of a relapse with resistant colonies 

is studied in Section 4 . Section 5 presents results obtained 

when studying tumor growth in a heterogenous environment. In 

Section 6 we discuss strategies to optimize the drug administra- 

tion using a combination of the cytotoxic and cytostatic drug. In 

Section 7 we use the experiments of Mumenthaler et al. (2015) to 

simulate non-small-cell lung cancer and its resistance to erlotinib. 

Concluding remarks are provided in Section 8 . 

2. A model of chemotherapy for heterogeneous tumors 

In this section we present our model for the dynamics of the 

tumor cell density n ( t, x, θ ). We assume a two-dimensional prob- 

lem in space. The phenotype variable, θ ∈ [0, 1], represents the 

level of resistance to cytotoxic agents, with θ = 0 corresponding to 

fully-sensitive cells, and θ = 1 corresponding to fully resistant cells. 

We define the total cell density at each time and space location as 

ρ(t, x ) 
. = 

∫ 1 

0 

n (t, x, θ ) dθ, (1) 

and the cell pressure p ( t, x ) in terms of cell density according to 

p(t, x ) 
. = 

k 

k − 1 

ρk −1 ( t, x ) , (2) 

with a constant k > 1. 

The tumor growth is modeled as a porous medium-type 

reaction-diffusion equation 

∂ t n (t, x, θ ) = G (t, x, θ ) n (t, x, θ ) (3) 

+ νn �n (t, x, θ ) + νp ∇ · (n (t, x, θ ) ∇p(t, x )) . 

The first term on the RHS of (3) is a growth term. The reaction 

term governing the growth is modeled as 

G (t, x, θ ) 
. = g(t, x, θ ) h (p, g) , (4) 

where g ( t, x, θ ) is the growth rate and h ( p, g ) is an indicator func- 

tion that restricts the growth term considering the cell pressure 

p ( t, x ) and homeostatic pressure p̄ . h ( p, g ) is defined with a Heavi- 

side function H ( · ) as follows, 

h (p, g) 
. = 1 − H ( p − p̄ ) H ( g ) . (5) 

This function restricts the tumor growth when p > p̄ and g > 0. We 

impose p̄ = k/ (k − 1) to ensure that the normalized cell density is 

bounded as ρ( t, x ) ≤ 1. 
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