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a b s t r a c t 

In most mammals, compensatory lung growth occurs after the removal of one lung (pneumonectomy). 

Although the mechanism of alveolar growth is unknown, the patterning of complex alveolar geometry 

over organ-sized length scales is a central question in regenerative lung biology. Because shear forces 

appear capable of signaling the differentiation of important cells involved in neoalveolarization (fibrob- 

lasts and myofibroblasts), interstitial fluid mechanics provide a potential mechanism for the patterning 

of alveolar growth. The movement of interstitial fluid is created by two basic mechanisms: 1) the non- 

uniform motion of the boundary walls, and 2) parenchymal pressure gradients external to the interstitial 

fluid. In a previous study (Haber et al., Journal of Theoretical Biology 400: 118-128, 2016), we investigated 

the effects of non-uniform stretching of the primary septum (associated with its heterogeneous mechan- 

ical properties) during breathing on generating non-uniform Stokes flow in the interstitial space. In the 

present study, we analyzed the effect of parenchymal pressure gradients on interstitial flow. Dependent 

upon lung microarchitecture and physiologic conditions, parenchymal pressure gradients had a significant 

effect on the shear stress distribution in the interstitial space of primary septa. A dimensionless param- 

eter δ described the ratio between the effects of a pressure gradient and the influence of non-uniform 

primary septal wall motion. Assuming that secondary septa are formed where shear stresses were the 

largest, it is shown that the geometry of the newly generated secondary septa was governed by the value 

of δ. For δ smaller than 0.26, the alveolus size was halved while for higher values its original size was 

unaltered. We conclude that the movement of interstitial fluid, governed by parenchymal pressure gradi- 

ents and non-uniform primary septa wall motion, provides a plausible mechanism for the patterning of 

alveolar growth. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In many paired organs, removal of one organ results in the 

“compensatory” growth of the remaining organ. In the lung, 

compensatory growth after the surgical removal of one lung 

involves an increase in lung size, weight and cell number (e.g., 

Gibney et al., 2011; Chamoto et al., 2012; Konerding et al., 2012 ). 

Importantly, lung growth is also characterized by an increase in 

the number of alveoli. In mice, more than 50 0,0 0 0 new alveoli 

form within 3 weeks after pneumonectomy ( Fehrenbach et al., 

2008 ). The mechanisms that initiate and guide neoalveolarization 

over organ-sized length scales are currently unknown. 

There are several clues suggesting that lung movement during 

breathing is important to the process regulating neoalveolarization 
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( Butler et al., 2012; Ysasi et al., 2013 ). The placement of inert 

material (e.g. wax), called "plombage", in the empty hemithorax 

after pneumonectomy prevents displacement and expansion of the 

remaining lung. Similarly, phrenic nerve transection after pneu- 

monectomy prevents diaphragmatic contraction and the cyclic 

stretch of the remaining lung. Both interventions are effective an 

inhibiting post-pneumonectomy lung growth. 

A potential mechanism for translating lung movement into 

regenerative signals, particularly over organ-sized length scales, is 

interstitial fluid flow ( Rutkowski & Swartz, 2007 ). The mechanical 

forces (shear stresses) associated with interstitial flows can induce 

cellular differentiation. Ng et al., (2005) have shown that the 

shear stress associated with interstitial flow can induce the dif- 

ferentiation of fibroblasts into myofibroblasts–a prominent cell in 

the lung parenchyma ( Kapanci et al., 1992 ) and commonly linked 

with both lung development ( Dickie et al., 2007 ) and regeneration 

( Bennett et al., 2017 ). 

http://dx.doi.org/10.1016/j.jtbi.2017.03.019 
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The movement of interstitial fluid is created by two basic 

mechanisms; 1) the non-uniform motion of the boundary walls, 

and 2) a parenchymal pressure gradient. A source of boundary 

wall motion is lung ventilation. Our previous work described 

how non-uniform motion of the walls of primary septa after 

pneumonectomy can generate interstitial flow and produce a 

non-uniform shear stress distribution ( Haber et al., 2016 ). The 

direction of lymph flow and the complex interdependence of the 

lung parenchyma predict an interstitial pressure gradient from the 

subpleural alveoli to the hilum ( Mead et al., 1970 ). Experimentally, 

micropuncture has been used to document a pressure gradient 

between the subplueural alveolar regions and the hilum of the 

lung ( Bhattacharya et al., 1984 ). Although the measured gradient 

was reduced in situations with pulmonary edema and elevated 

alveolar pressures ( Bhattacharya et al., 1989 ), the interstitial fluid 

gradient persisted despite extremes of edema and airway disten- 

sion. The robust persistence of this longitudinal (alveolar-to-hilar) 

gradient suggests the potential for this gradient to participate in 

the specification of septal location. 

In this report, we investigated the influence of parenchymal 

pressure gradients on interstitial fluid flow. We found that a 

parenchymal pressure gradient significantly modifies interstitial 

fluid flows and likely plays an important role in determining the 

size of newly-formed alveoli during compensatory growth. 

2. Analysis 

2.1. Geometric descriptions of the model 

In this study, we adopt a geometrical model used in our previ- 

ous paper and perform the analysis in line with our previous study 

( Haber et al., 2016 ). Briefly, we perceive an alveolated duct as a 

long cylinder of diameter D out ( Fig. 1 ). The outer boundary of this 

cylinder corresponds to primary septa with thickness of 2H ( Fig. 1 

right). Interstitial fluid (viscosity μ and density ρ ) within the pri- 

mary septa (shown in blue in the figure) is driven by a parenchy- 

mal pressure gradient exerted in the interstitial space and by the 

non-uniform motion of the boundary walls which was addressed 

in our previous paper. In the present study we will consider both 

the pressure gradient and non-uniform boundary motion. 

The interstitial space is sandwiched between two layers of 

epithelium ( h represents the thickness of epithelial layer) and 

an alveolated duct is treated as a long cylinder ( Fig. 2 , top) with 

a small thickness ( H ) relative to the duct outer diameter ( H << 

D out ), the interstitial space of the primary septum was viewed as 

a space confined by two flat planes in the previous study. We 

adopt the same view here ( Fig. 2 bottom). To represent a helical 

pattern in line elements (collagen and elastin fibers) believed to 

be woven at the alveolar opening (e.g., Wilson & Bachofen, 1982; 

Weibel, 1984 ) along the alveolar duct and relatively uniform size 

of the original alveoli, our model of the primary septum exhibits 

a crisscross pattern with the stiffer regions (corresponding to the 

sites of the collapsed secondary septa shown in red) at the edges. 

The analysis will be performed in a square unit cell. 

2.2. The walls 

We refer the reader to our previous paper ( Haber et al., 2016 ) 

where a detailed description is provided how to obtain the velocity 

of the walls made of heterogeneous material. The primary septal 

walls undergo periodic stretching and contraction due to the 

tidal breathing and the size of the unit cell λ change periodically, 

namely, 

λ(t) = λ(t + T ) (1) 

where T is the breathing period. We define λ0 as the size of the 

unit cell at time t = 0 and as we have shown in our previous 

paper, the functional dependence of λ upon time t are determined 

by the stresses prevailing in the system. 

We proved that the heterogeneous properties of the wall 

matter give rise to non-uniform wall velocity v = ( v x , v y ) that can 

be expressed by the real value of the following complex Fourier 

series along the x and y coordinates with period length λ, 

v x = 

˙ λ

λ
x + 

∞ ∑ 

m =0 
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n =0 

V 

x 
mn exp [ 2 iπ(mx + ny ) /λ(t) ] 

v y = 

˙ λ

λ
y + 

∞ ∑ 

m =0 
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n =0 

V 

y 
mn exp [ 2 iπ(mx + ny ) /λ(t) ] (2) 

The leading terms in (2) are merely velocities that are gener- 

ated by the expansion and contraction of the edges of the unit 

cell as seen by an observer located at the unit-cell origin. We also 

require that V x 
00 

= V 
y 
00 

= 0 so that the velocity ay x = y = 0 is zero. 

The constant, complex velocity coefficients V x mn and V 
y 
mn can be 

determined by a Fourier (complex) expansion of the velocity field 

at the wall, obtained, in principle, if the spatial distribution of the 

wall matter is known. Eq. (2) is employed as the no-slip boundary 

conditions that the interstitial velocity field must satisfy at the 

walls. 

2.3. The interstitial fluid flow model 

The interstitial fluid is considered incompressible and Newto- 

nian. The layer is very thin in comparison to the layer’s radius of 

curvature. The flow is very slow so that the Reynolds number of 

the flow (based on the fluid properties, the maximum stretching 

velocity and the layer thickness) and the Womersley number 

(based on the breathing frequency) are much smaller than unity. 

Thus, the 3D, Stokes, quasi-steady differential equations govern 

the fluid pressure p and the fluid velocity field components u x , u y , 

u z along the Cartesian coordinate system x, y, z , respectively; 
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Employing (2) and assuming no slip and no wall penetration, 

the associated boundary conditions are, 

u x (x, y, z = ±H) = 

˙ λx 

λ
+ 

∞ ∑ 

m =0 
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n =0 

V 

x 
mn exp [ 2 iπ(mx + ny ) /λ(t) ] 

u y (x, y, z = ±H) = 

˙ λy 

λ
+ 

∞ ∑ 

m =0 
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n =0 

V 

y 
mn exp [ 2 iπ(mx + ny ) /λ(t) ] 

u z (x, y, z = ±H) = ± ˙ H (4a-c) 

We further assume that a parenchymal pressure gradient �P/L 

exists along the axial direction of the interstitial space (In general, 

from the alveolar region to the hilar region ( Bhattacharya et al., 

1984; Aukland & Reed, 1993 )). The 2D Poiseuille flow u a induced 

by the pressure gradient alone is well known, 

u a = − 1 

2 μ

�P 

L 
( H 

2 − z 2 ) i a = −
√ 

2 

4 μ

�P 

L 
( H 

2 − z 2 )( i x + i y ) (5) 

where i a , i x , i y are unit vectors along the axial direction, the 

x-coordinate and y coordinate, respectively. Linearity of the differ- 

ential equations (3) makes it possible to superimpose the velocity 

components induced by the pressure gradients to those generated 
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