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a b s t r a c t 

The extracellular domain of the heart is anisotropic, which affects volume conduction and therefore body 

surface potentials. This paper tests the hypothesis that when wall thickness is sufficiently small (such 

as in the atria), the effect of extracellular anisotropy can be estimated by modifying local dipole current 

sources. A formula based on the Gabor–Nelson equivalent dipole and on the reciprocity theorem is de- 

rived to compute a linear transformation of the dipole sources that approximates in an isotropic volume 

conductor the far-field of the actual sources in an anisotropic volume conductor. It involves solving three 

Poisson equation (once for all). The results obtained in an atrial model embedded in a boundary-element 

torso model suggest that when wall thickness is < 3 mm, simulated P waves are weakly altered by ex- 

tracellular anisotropy during sinus rhythm: an anisotropy ratio of 4:1 typically reduced the longitudinal 

component of the dipole sources by < 3%, increased the transverse component by < 5%, and increased 

the transmural component by ≈ 25% (which may be relevant in case of epicardial-endocardial dissoci- 

ation). Due to uncertainty on experimental conductivity values, it is proposed that atrial extracellular 

anisotropy may be neglected when computing P waves. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

The forward problem of electrocardiography consists in com- 

puting the electric potential on the torso from the bioelectric cur- 

rent sources located within the myocardium. These potentials are 

affected by the volume conduction properties of the torso. Com- 

puter models have been developed to estimate the effects of the 

conduction inhomogeneities created by the heart, the blood and 

organs such as the lungs [1–10] . Most of these studies focused on 

the ventricles or neglected extracellular anisotropy in the atria. 

The boundary element method [11] has been proposed and val- 

idated for computing the atrial contribution to the ECG [7,12,13] . 

This method can incorporate intracellular anisotropy but is not 

well adapted for taking into account extracellular anisotropy, so its 

applicability to the cardiac forward problem relies on the hypoth- 

esis that extracellular atrial anisotropy has a limited effect. The 

same question arises when computing atrial electrograms gener- 

ated by an anisotropic tissue [14] . 
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Due to the thinness of the atria, the effect of extracellular atrial 

myocardial anisotropy is expected to be small. The rationale is that, 

in the Henriquez et al. [15] theoretical model of plane wave prop- 

agation in a uniform slab of tissue (see also the subsequent pa- 

per by Tranquillo et al. [16] ), the influence of myocardial extra- 

cellular properties on the potential in the surrounding bath dis- 

appears when tissue thickness tends to zero. In a more recent 

and more realistic simulation study by Keller et al. [10] , the influ- 

ence of cardiac extracellular properties on P wave morphology was 

found to be less important than that of blood, lungs, and skeletal 

muscles. 

In this paper, we propose an approach for assessing not only 

the global influence of atrial extracellular anisotropy on the P 

wave as in previous works, but also for determining the type 

and location of bioelectric sources that may lead to increased 

errors, and how the sources could be modified to improve ac- 

curacy. The approach is inspired from Potse et al. [9] who ad- 

justed the local dipole current sources in the ventricles in an at- 

tempt to reproduce cardiac anisotropy in a boundary-element torso 

model. Here a theoretical formula is provided to perform the local 

dipole optimization. The technique is studied as a function of tis- 

sue thickness in simplified and more realistic volume conduction 

models. 
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2. Methods 

2.1. Problem statement 

Consider a current-dipole source d 0 located at x 0 within a re- 

gion � (the myocardium) with inhomogeneous and anisotropic 

conductivity tensor σ( x ). The rest of the space is assumed to be 

a uniform and isotropic volume conduction medium with conduc- 

tivity σ 0 . The potential field generated by this dipole at y in the 

unbounded ( ∞ ) inhomogeneous ( i ) medium is denoted by φi , ∞ ( y ; 

d 0 ). Note that through the application of a transfer matrix to this 

potential field, body surface potentials in a bounded, inhomoge- 

neous volume conductor (for instance including lungs and blood 

cavities) can be derived [11] . Since the volume conduction prob- 

lem is linear, the field φi , ∞ can be expressed as L ( y, x 0 ) · d 0 . We 

are seeking a simple, approximate formula for the matrix L . 

The problem is to estimate the dipolar moment of an equivalent 

dipole d located at the same position x 0 in a uniform ( u ) isotropic 

medium with conductivity σ 0 that would generate a potential 

field, denoted by φu , ∞ ( y ; d ), asymptotically similar to φi , ∞ ( y ; d 0 ) 

at large distances ‖ y − x 0 ‖ . The objective is to derive a formula to 

compute d as a function of d 0 , the geometry and volume conduc- 

tion properties. 

2.2. Equivalent dipole estimation 

In order to estimate the equivalent dipole, the problem in a 

bounded medium is first considered. A rectangular parallelepiped 

P containing � is constructed. The volume conduction properties 

remain the same inside P . The potential field generated by the 

dipole in the bounded (b) uniform medium and in the bounded in- 

homogeneous medium are respectively denoted by φu, b ( y ; d ) and 

φi, b ( y ; d 0 ). 

The equivalent dipole may be approximated using the Gabor–

Nelson theory [17] , according to which the dipole moment is ob- 

tained as a surface integral over the outer surface P 

d = σ0 

∫ 
P 

φi,b (y ; d 0 ) n d S(y ) , (1) 

where n is the normal vector. If the domain � was uniform with 

conductivity σ 0 , the integral would give d = d 0 . This approach has 

been previously used to derive vectorcardiographic transfer matri- 

ces [18] . 

The Green’s function G 

i, b ( y, x ) is the potential in the bounded 

inhomogeneous medium generated at y by a point source located 

at x , i.e. ∇ y · σ∇ y G 

i,b (y , x ) = −δ(y − x ) with no-flux condition at 

the boundary of P . Therefore, the field generated by the dipole d 0 

can be written as: 

φi,b (y ; d 0 ) = ∇ x G 

i,b (y , x 0 ) · d 0 , (2) 

where by definition the gradient is a row vector. Combining 

(1) and (2) , the equivalent dipole is estimated as a linear trans- 

formation of the real dipole: 

d = 

(
σ0 

∫ 
P 

n · ∇ x 0 G 

i,b (y , x 0 ) d S(y ) 
)

· d 0 = M(x 0 ) · d 0 , (3) 

The six faces of P are denoted by P + 
k 

and P −
k 

for k = 1 , 2 , 3 . Then, 

the matrix M can be expressed as 

M(x 0 ) = σ0 

3 ∑ 

k =1 

e k · ∇ x 0 

(∫ 
P + 

k 

G 

i,b (y , x 0 ) d S −
∫ 

P −
k 

G 

i,b (y , x 0 ) d S 

)

(4) 

since n = ±e k on P ±
k 

if { e k } forms the orthonormal basis associated 

with the parallelepiped P . After application of the theorem of reci- 

procity G 

i,b (y , x ) = G 

i,b (x , y ) , the term in parentheses, denoted by 

φi,b 
k 

, is written as 

φi,b 
k 

(x 0 ) = 

∫ 
P + 

k 

G 

i,b (x 0 , y ) d S −
∫ 

P −
k 

G 

i,b (x 0 , y ) d S (5) 

and is the solution to the volume conduction equation in the 

bounded inhomogeneous medium with distributed current source 

of intensity +1 on the face P + 
k 

and intensity −1 on the face P −
k 

. 

The matrix M ( x 0 ) can therefore be computed for every source 

location x 0 in � by solving three Poisson problems to determine 

the fields φi,b 
k 

and by inserting their gradient in the rows of the 

matrix M . 

Note that if all conductivities are scaled by the same factor κ , 

then by the definition of the Green’s function, G 

i, b is divided by 

κ while σ 0 is multiplied by κ , which means that the matrix M is 

invariant to such scaling (based on Eq. (4) ). 

If a sufficiently large parallelepiped P is used, the matrix M does 

not depend on P because φi,b 
k 

(x ) converges in �. Also, when P be- 

comes large, φi, b → φi , ∞ and φu, b → φu , ∞ so that d = M(x 0 ) d 0 

provides a solution to the unbounded problem. As a result, an ap- 

proximation for the far-field generated by a dipole d 0 located at x 0 
in an inhomogeneous anisotropic medium is obtained as: 

φi, ∞ (y ; d 0 ) ≈ φu, ∞ (y ; M(x 0 ) d 0 ) = 

(y − x 0 ) 
T M(x 0 ) d 0 

4 πσ0 ‖ y − x 0 ‖ 

3 
. (6) 

The entries of the matrix M are non-dimensional and will be called 

correction factors. These components will be expressed in the local 

coordinate system associated with fiber orientation. 

2.3. Tissue models 

The approach was tested in 2D and 3D geometries in which tis- 

sue thickness was varied. 

The first geometry was an annulus in 2D with a radius of 

16 mm (mean of inner and outer radii) and a thickness between 

1.5 and 10 mm. The annulus was embedded in a 50 by 50 mm 

conductive square region (the domain P ). Fiber orientation was as- 

sumed to be tangent to the circles, so there were three extra- 

cellular conductivities: the radial conductivity σ r , the tangential 

conductivity σ θ , and the conductivity of the surrounding bath σ 0 

(isotropic). Note that the non-dimensional matrix M depends only 

on the ratios σ r / σ 0 and σθ / σ 0 . To compute far-field potentials, the 

surrounding bath was then extended to 100 by 100 mm. 

The second geometry was based on a 3D atrial model [13] in 

which atrial wall thickness δ was uniform and varied between 1.5 

and 4 mm. For that purpose, the mid-atrial surface was extracted 

from the original model and the nodes within a distance of δ/2 

from the surface were included in the new geometry. Fast conduct- 

ing bundles (including the pectinate muscles) were kept intact. The 

atria were embedded in a parallelepiped P that left at least 5 mm 

space between the epicardial surface and the boundary. To check 

convergence, the volume was extended by 5 mm on all six sides. 

Fiber orientation was assumed to be the same across atrial wall 

thickness. There were three extracellular conductivities: longitudi- 

nal ( σ l ) and transverse ( σ t ) conductivity, and that of the surround- 

ing bath ( σ 0 ). 

The Poisson equation was discretized using a finite differences 

method [19] on a regular grid with 0.33 mm inter-node spacing. 

The linear systems were solved using a biconjugate gradient stabi- 

lized method with an incomplete LU preconditioner. 

2.4. ECG computation 

To evaluate the influence of atrial extracellular anisotropy on 

body surface potentials, P waves were computed. Sinus rhythm 

was simulated in the monodomain framework using the original 
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