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a b s t r a c t 

The paper presents simulation of two-phase flow in discrete fracture networks with numerical mani- 

fold method (NMM). Each phase of fluids is considered to be confined within the assumed discrete in- 

terfaces in the present method. The homogeneous model is modified to approach the mixed fluids. A 

new mathematical cover formation for fracture intersection is proposed to satisfy the mass conservation. 

NMM simulations of two-phase flow in a single fracture, intersection, and fracture network are illustrated 

graphically and validated by the analytical method or the finite element method. Results show that the 

motion status of discrete interface significantly depends on the ratio of mobility of two fluids rather than 

the value of the mobility. The variation of fluid velocity in each fracture segment and the driven fluid 

content are also influenced by the ratio of mobility. The advantages of NMM in the simulation of two- 

phase flow in a fracture network are demonstrated in the present study, which can be further developed 

for practical engineering applications. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

Natural rock mass consists of intrinsic discontinuities forming 

a discrete fracture network, which generally acts as potential path 

for fluid flow. Understanding of the behavior fluid flow and its ef- 

fect on the rock mass is of significance in hydro-geological and 

energy engineering. Many relevant researches are reported, such 

as tracking non-aqueous phase liquids (NAPLs) migration ( Slough 

et al., 1999a,b ), nuclear waste management in subsurface ( Thunvik 

and Braester, 1990; Berger and Braester, 20 0 0 ), and enhanced oil 

recovery in fractured reservoirs, etc. ( Wanfang et al., 1997; Joon- 

aki and Ghanaatian, 2013 ). Due to the intrinsic heterogeneous char- 

acteristic of rock mass and the interaction with fluids, simulation 

of two-phase flow in a fractured rock medium is very challeng- 

ing ( Pruess and Tsang, 1990; Reichenberger et al., 2006; Hoteit and 

Firoozabadi, 2008; Huang et al., 2014 ). There are three prevailing 

fundamental models for the representation of single- or two-phase 

flow in heterogeneous fractured media, i.e., (1) Equivalent contin- 

uum model, (2) Dual-continuum model, and (3) Discrete fracture 

model ( Wanfang et al., 1997; Li et al., 2014 ). 

The equivalent continuum model represents the rock mass with 

a fracture network as a porosity media, in which the permeability 
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of the intact rock mass is generally neglected. The effective param- 

eters, such as equivalent permeability and effective porosity, are 

assumed to characterize the hydraulic property of the fractured do- 

main ( Long et al., 1985 ). The dual continuum model is relatively 

more accurate by assuming both the rock matrix and fracture net- 

work as porosities. These two porosities overlaps with each other 

in the geometric model with their respective different seepage gov- 

erning equations. The governing equations are connected through a 

transfer function in the mathematical model ( Huang et al., 2014; Li 

et al., 2014 ). These two aforementioned continuum models are not 

very efficient to analyze the transient seepage problems due to the 

striking contrast of the hydraulic properties between the fractures 

and the rock matrix. And how to effectively represent the transfer 

function is yet to be explored for dual continuum model ( Lim and 

Aziz, 1995 ). 

The discrete fracture model (DFM) describes the fractures ex- 

plicitly. It is widely used for simulations of single-, two- and 

multi-phase flow in fractured media ( Murphy and Thomson, 1993; 

Maryška et al., 2004 ; Baghbanan and Jing, 2007 ; Benedetto et al., 

2014; Liu et al., 2016 ). The fractures can be treated similarly as 

the matrixes when they stretch through the rock matrix and are 

distributed sparsely ( Hughes and Blunt, 2001 ). Otherwise, the so 

called “reduced-dimension method” is applied, in which the frac- 

ture networks in an n dimension domain has been simplified by an 

https://doi.org/10.1016/j.advwatres.2017.08.013 

0309-1708/© 2017 Published by Elsevier Ltd. 

https://doi.org/10.1016/j.advwatres.2017.08.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advwatres
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advwatres.2017.08.013&domain=pdf
mailto:fanlifeng@bjut.edu.cn
https://doi.org/10.1016/j.advwatres.2017.08.013


294 G.W. Ma et al. / Advances in Water Resources 108 (2017) 293–309 

Fig. 1. Schematic illustration of the fluid flow in a saturated fracture. 

n – 1 dimensional mesh geometrically ( Juanes et al., 2002; Karimi- 

Fard et al., 2004; Hoteit and Firoozabadi, 2005; Martin et al., 2005 ). 

The permeability of the rock matrix can be considered in this 

method ( Kim and Deo, 20 0 0; Belayneh et al., 2006 ). On the other 

hand, in order to simulate fluid flow in the densely fractured rock 

masses, it is can be assumed that fluid flows within the connected 

fracture networks only if the permeability of rock matrix is much 

smaller than that of the fracture network ( Chen and You, 1987; 

Braester and Thunvik, 1988; Hoteit and Firoozabadi, 2009 ). 

Based on these three models, many computational methods 

have been proposed to solve the two-phase flow in the fractured 

media, e.g., finite element method (FEM) ( Kim and Deo, 20 0 0; 

Karimi-Fard and Firoozabadi, 2003 ), finite difference method (FDM) 

( Slough et al., 1999a , b ), finite volume method (FVM) ( Granet et al., 

20 01; Monteagudo and Firoozabadi, 20 04 ), and hybrid method 

( Hoteit and Firoozabadi, 2008; Huang et al., 2014 ), etc. A review of 

these methods for the two-phase flow in the fracture network has 

been performed by Hoteit and Firoozabadi (2008) . However, the 

discrete interface between two fluids generally leads to the mov- 

ing boundaries, pressure, and saturation discontinuities. Mesh is 

required to conform to or adapt to the interface of fluids based on 

these traditional numerical method. Thus, re-meshing the moving 

interface between the fluids highly increases the computational in- 

tensity. To overcome this inefficiency, numerical manifold method 

(NMM) is introduced and developed to simulate the two-phase 

flow in fracture networks. 

NMM is able to model both the continuum and a discontinuous 

medium simultaneously based on a finite cover system with inde- 

pendent mathematical and physical covers. The NMM cover system 

is free from the model geometries, which dispense the necessity of 

re-meshing due to evolution of the discontinuity. Thus, the NMM 

innovative dual cover system overcome the inconvenience of the 

interface element assumption that is required in a conventional 

numerical method. In this way, the NMM can model continuum, 

transition of a continuum to a discontinuous medium, as well as 

a discontinuous medium including the geometric discontinuities 

( Shi, 1991 , 2013 ) and material discontinuities ( An et al., 2011; Wu 

et al., 2017 ) in a unified manner. A review of the NMM can be 

found in Shi (1991 , 2013 ). NMM was initially proposed to solve 

rock mechanics problems, such as stability of rock structures ( Ma 

et al., 2010; Ning et al., 2011 ), failure propagation in rock masses 

( Ma et al., 2009 ; Zhang and Zhang, 2012; Zheng et al., 2014 ; 

Zheng and Xu, 2014 ; Yang et al., 2016; Wong and Wu, 2014; Zhang 

et al., 2017 ), hydraulic fracture simulating ( Wu and Wong, 2014; 

Zhang et al., 2015 ), and stress wave propagation across rock masses 

( Fan et al., 2013; Zhao et al., 2014; Zhou et al., 2017 ). Recently, 

the NMM has also been explored and developed to analyze the 

seepage flow in porous and fractured media. Zheng et al. (2015 ) 

adopted the NMM to solve unconfined seepage flow in porous me- 

dia. A new second-order numerical manifold method was proposed 

and used to analyze free surface flow in inner drains by Wang et al. 

(2016) . Hu et al. (2016, 2017) further developed a new NMM model 

for analysis of fluid flow and coupling process of hydro-mechanical 

in fractured media with non-conforming mesh. On the other hand, 

application of NMM to two-phase flow in fractures and fracture 

network has not been reported. 

This paper presents a numerical manifold method simulation of 

two-phase flow in fracture networks. Detailed derivation are pre- 

sented for the development of NMM for the two-phase flow in 

a fracture network, such as deleting of isolated and dead frac- 

tures, the proposed mathematical covers for fractured intersec- 

tions, derivation of NMM discrete equation, and updating of time 

step. Exemplification of the developed NMM for study of the two- 

phase flow in a single fracture, single intersections, and fracture 

networks is then implemented. The NMM simulation results are 

verified by those from the FEM or analytical method. 

2. Two-phase flow in a fracture 

2.1. Governing equations 

The fluids flowing in a facture are separated by discrete in- 

terfaces in the present study. Therefore, in each fluid domain, 

the fluid flow can be represented as a single-phase flow follow- 

ing mass conservation and momentum (Darcy’s law) equations. 

Single-phase fluid flow in a fracture has been extensively studied 

( Witherspoon et al., 1980; Li et al., 2016 ). Fig. 1 is the schematic 

illustration of a single-phase flow in a single fracture, where b h is 

the hydraulic aperture, dx is the length of small control volume in 

the direction of x, and ρ is the fluid density. Therefore, the mass 

conservation can be expressed as 

b h ρv · δt −
[

b h ρv + 

∂( b h ρv ) 
∂x 

dx 

]
· δt = 

∂( b h ρdx ) 

∂t 
· δt (1) 

where δt is the time interval, v denotes the average flow velocity 

in a fracture, which can be described using the below cubic law 

v = − b 2 
h 

12 μ

∂ p 

∂x 
= − k 

μ

∂ p 

∂x 
(2) 

where x is the local coordinate for the fracture, p is fluid pres- 

sure, μ is the fluid dynamic viscosity, k is fluid permeability as 

k = b 2 
h 
/ 12 . 

Actually, the surface of fracture in a rock mass is not absolutely 

smooth and parallel. In order to use the cubic law to describe flu- 

ids flow in rough fractures, the method that treating a rough frac- 

ture as a pair of smooth and parallel plates is often adopted. The 

corresponding aperture of the smooth and parallel fracture is ‘hy- 

draulic aperture’ or ‘equivalent hydraulic aperture’. Since it is dif- 

ficult to obtain the hydraulic aperture, efforts have been devoted 

to calculate the appropriate hydraulic aperture for a rough frac- 

ture. Previously proposed methods were summarized and com- 

pared in the research of Li et al. (2016) in detail. Moreover, it 

is also suggested that the hydraulic aperture could be calculated 

using the geometric mean aperture ( Konzuk and Keuper 2004; 

Babadagli 2006; Walsh et al., 2008 ). For example, Morgan and 

Aral (2015) took the average of the geometric aperture of a wedge- 

shaped fracture as its hydraulic aperture to study the fluids flow in 

a single fracture. 

The present study is mainly focused on the development of nu- 

merical manifold method for two-phase flow simulation in discrete 

fracture networks. Therefore, the cubic law with constant hydraulic 

apertures is directly utilized. 

For compressible fluid, the fluid compressibility β can be ex- 

pressed under isothermal condition as 

β = 

∂ρ

ρ∂ p 
(3) 

Combining (1) , (2) and (3) , the governing equation for single-phase 

flow in a single fracture is then derived as 

β
∂ p 

∂t 
− β

k 

μ

(
∂ p 

∂x 

)2 

− k 

μ

∂ 2 p 

∂ x 2 
= 0 (4) 
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