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A B S T R A C T

We describe the growth dynamics of a harvested fish population in a random environment using a stochastic
differential equation logistic model, where the harvest term depends on a constant or a variable fishing effort.
We consider revenues to be proportional to the yield and costs to be quadratic in terms of effort. We compare the
optimal expected profit obtained with two types of harvesting policies, one based on variable effort, which is
inapplicable, and the other based on a constant effort, which is applicable and sustainable. We answer two new
questions: (a) What is the constant effort that optimizes the expected profit per unit time? (b) How do the two
policies compare in terms of performance? We show that, in a realistic situation, there is only a slight reduction
in profit when choosing the applicable constant effort policy instead of the inapplicable policy with variable
effort.

1. Introduction

In a deterministic environment, the logistic growth model for a
harvested population can be described, in terms of the per capita growth
rate, by the ordinary differential equation (ODE)
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where X(t) is the population size at time t, measured as biomass or as
number of individuals, r > 0 is the intrinsic growth rate of the popu-
lation, K > 0 is the carrying capacity of the environment, q> 0 is the
catchability coefficient, E(t) ≥ 0 is the fishing effort and X(0) = x> 0
represents the population size at time 0. The yield per unit time from
harvesting is denoted by H(t) = qE(t)X(t).

However, the environment is subject to significant random fluc-
tuations that affect the population per capita natural growth rate. The
effect of these fluctuations can be approximated by a white noise σε(t),
where ε(t) is a standard white noise and σ > 0 measures the strength of
environmental fluctuations. Therefore, the above ODE Eq. (1) must be
updated to the stochastic differential equation (SDE)
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which can be written in the standard format
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where ∫=W t ε s ds( ) ( )t
0 is a standard Wiener process. We will assume

that r > σ2/2, otherwise the population will rendered extinct, even in
the absence of harvesting (see Braumann, 1985).

Stochastic differential equations have been studied as a way to ex-
plain many physical, biological, economic and social phenomena. A
particular case is the application (starting with the pioneering work of
Beddington and May (1977)) to the growth dynamics of a harvested
population subject to a randomly varying environment, with the pur-
pose of obtaining optimal harvesting policies. Such policies usually are
intended to maximize the expected yield or profit over a finite or in-
finite time horizon T. Since population size depends on the fishing ef-
fort, it seems natural to consider E(t) as a control and apply optimal
control techniques to achieve either yield or profit optimization, dis-
counted by a social rate.

The profit per unit time can be defined as the difference between
sales revenue and fishing costs, i.e.,

≔ −P t R t C t( ) ( ) ( ),

where R(t) and C(t) are respectively the revenue and cost per unit time.
We consider the revenue per unit time to be proportional to the yield,

=R t pH t( ) ( ),
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where p > 0 is the price per unit of yield. The cost of harvest per unit
time is assumed to depend on effort and to have a quadratic form given
by

= = +C t c E t E t c E t c c E t( ) ( ( )) ( ), with ( ( )) ( ),1 2

where c(E(t)) is the cost per unit effort and c1, c2 > 0 are constants. The
quadratic cost structure incorporates the case where the fishermen need
to use less efficient vessels and fishing technologies or pay higher
overtime wages to implement an extraordinary high effort (see Clark,
1976, 1990). However, other more complicated profit structures can be
used, as well as other population growth models (for instance, the
Gompertz model instead of the logistic). The methodology would be
similar to the one we use in this paper.

In the deterministic case, there is a quite comprehensive account of
optimal harvesting policies regarding yield or profit optimization
(Clark, 1976, 1990). Under general assumptions, unless we are close to
the end of a finite time horizon T, the optimal policy is to harvest with
maximum intensity (which can be limited to a maximum harvesting
effort or be unlimited) when the population is above a critical threshold
and stop harvesting (zero effort) when the population is below that
threshold. Once the threshold is reached, one just needs to keep the
harvesting rate constant at an appropriate value so that the population
remains at the threshold size. However, when the population is below
the threshold, the fishery should be closed until the threshold is
reached, which may take a while.

Stochastic optimal control methods were also applied to derive
optimal harvesting strategies in a randomly varying environment (e.g.
Alvarez, 2000a,b; Alvarez and Shepp, 1998; Arnason et al., 2004;
Hanson and Ryan, 1998; Lande et al., 1994, 1995; Lungu and Øksendal,
1996; Suri, 2008). The optimal policy is similar to the deterministic
case, i.e., harvest with maximum intensity when the population is
above a critical threshold (not necessarily the same as in the determi-
nistic case) and stop harvesting when below the threshold. However,
after the threshold size is attained, due to random fluctuations of the
environment, population size will keep varying. In this case, fishing
effort must be adjusted at every instant, so that the size of the popu-
lation does not go above the equilibrium value. Such policies imply that
the effort changes frequently and abruptly, according to the random
fluctuations of the population. Sudden frequent transitions between
quite variable effort levels are not compatible with the logistics of
fisheries. Besides, the period of low or no harvesting poses social and
economical undesirable implications. In addition to such shortcomings,
these optimal policies require the knowledge of the population size at
every instant, to define the appropriate level of effort. The estimation of
the population size is a difficult, costly, time consuming and inaccurate
task and, for these reasons, and the others pointed above, these policies
should be considered unacceptable and inapplicable.

In Braumann, 1981, 1985, 2008, a constant fishing effort, E(t) ≡ E,
was assumed, providing an alternative approach to optimal harvesting.
For a large class of models (including the logistic), it was found that,
taking a constant effort in Eq. (2), there is, under mild conditions, a
stochastic sustainable behaviour. Namely, the probability distribution
of the population size at time t will converge, as t→ +∞, to an equi-
librium probability distribution (the so-called stationary or steady-state
distribution) having a probability density function (the so-called sta-
tionary density). For the logistic model, the stationary density function
was found, and the effort E that optimizes the steady-state yield was
determined. The issue of profit optimization, however, was not ad-
dressed.

This paper considers this issue of profit optimization for the sus-
tainable constant effort harvesting policy. This policy, rather than
switching between large and small or null fishing effort, keeps a con-
stant effort and is therefore compatible with the logistics of fisheries.
Furthermore, this alternative policy does not require knowledge of the
population size. However, it will result in a reduction of the profit when
we compare it with the inapplicable optimal policy. We will examine if

such reduction is appreciable or negligible.
Section 2 presents the approach to solve the optimization variable

effort problem through a dynamic programming method. In Section 3
we present the alternative sustainable approach based on constant ef-
fort. Section 4 shows an application with realistic biological and fishing
parameters in which the two policies are compared using numerical and
Monte Carlo methods. We end up, in Section 5, with the conclusions.

Computations were carried out with R (http://r-project.org) and the
code is available as supplementary material.

2. Variable effort optimal policy

This section will summarize the variable effort optimal policy under
a randomly varying environment. We will start the optimization at time
t= 0. Let X(0) = x be the corresponding population size. Furthermore,
harvesting continues up to the time horizon T <+∞ and we work with
the profit present value, i.e., future profits are discounted by a rate
δ > 0 accounting for interest rate and cost of opportunity losses and for
other social rates. For a time t in the horizon [0, T], we define
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which is, at time t, the expected discounted future profits when the
population size at that time is y.

We want to optimize the expected accumulated discounted profit
earned by the harvester in the interval [0, T],
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where we denote  ⋯ =X x[ | (0) ] by  ⋯[ ]x .
Given that E(t) is used as a control, the optimization is carried out

with respect to E(t). A very important issue emerges when dealing with
fishing effort: should one consider any constraints on effort? In practice,
the effort is always non-negative, hence we must consider E(t) ≥ 0. On
the other hand, the number of tools, gears, hours, vessels and man-
power is finite and limited, so we will consider effort to be constrained
as

≤ ≤ < ∞E t E0 ( ) .max (4)

The optimization problem can be solved by stochastic dynamic
programming theory through Bellman's principle of optimality (see
Bellman, 1957). In terms of optimization theory, our problem is to find
the effort that maximizes V, subject to the growth dynamics given by
Eq. (2) and to the constrains on effort given by Eq. (4). In addition, from
Eq. (3) we get J(X(T), T) = 0, which is a boundary condition. Summing
up, the stochastic optimal control problem is to determine
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s.t.
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The maximizer, i.e., the effort function E(t) that leads to the max-
imum V*, will be called the optimal variable effort and will be denoted
by E*(t).

To solve Eq. (5), one can employ stochastic dynamic programming
to derive the Hamilton-Jacobi-Bellman (HJB) equation (see Hanson,
2007)
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