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a b s t r a c t 

Porta Mana and Zanna (2014) recently proposed a subgrid-scale parameterization for eddy-permitting 

quasigeostrophic models. In this model the large-scale fluid is represented as a non-Newtonian vis- 

coelastic medium, with a subgrid-stress closure that involves the Lagrangian derivative of large-scale 

quantities. This note derives this parameterization, including the nondimensional proportionality coef- 

ficient, using only two statistical assumptions: that the subgrid-scale term is locally homogeneous and 

decorrelates rapidly in space. The parameterization is then verified by comparing against eddy-resolving 

quasigeostrophic simulations, independently reproducing the results of Porta Mana and Zanna in a 

simpler model. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Continuing improvement in the spatial resolution of operational 

global ocean models has led to recent interest in subgrid-scale 

parameterizations appropriate to models that partially resolve 

mesoscale eddy dynamics. Fox-Kemper and Menemenlis (2008) ad- 

vocate a nonlinear viscosity based on Leith ’s (1996) adaptation 

to quasi-2D dynamics of Smagorinsky ’s (1963) successful large 

eddy simulation (LES) approach. Whereas Leith’s nonlinear vis- 

cosity is based on the idea of an inertial range with a con- 

stant downscale flux of enstrophy, Jansen and Held (2014) and 

Jansen et al. (2015) rely on the idea of an inertial range with 

zero flux of energy to develop a nonlinear negative-viscosity ap- 

proach similar to Sukoriansky et al. (1996) . The deterministic 

approaches of Fox-Kemper and Menemenlis (2008) , Jansen and 

Held (2014) and Jansen et al. (2015) are complemented by stochas- 

tic approaches that model the energy transfer between resolved 

and unresolved scales as a random process; such stochastic mod- 

els have been largely based on empirical knowledge of sub-grid 

eddy statistics (e.g. Berloff, 2005b; Grooms and Majda, 2013; Kit- 

sios et al., 2013; Jansen and Held, 2014; Grooms et al., 2015 ). 

Porta Mana and Zanna (2014) proposed a novel eddy-permitting 

parameterization not based on LES ideas like those above. They 

performed thorough multiscale statistical analysis of an eddy- 

resolving quasigeostrophic (QG) gyre simulation, similar to the ‘dy- 
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namically consistent’ diagnostic framework from Berloff (2005a) , 

studying in particular the component of the time tendency of the 

large-scale potential vorticity (PV) that is induced by subgrid-scale 

terms. Finding that existing parameterizations did not match their 

data well, they proposed and empirically verified an accurate 

parameterization of the form Eq. (5) below. This parameterization 

relates the subgrid-scale term to the Lagrangian time derivative 

of the large-scale potential vorticity. They showed that an analogy 

between the parameterization, which includes a time-tendency 

of large-scale quantities, and the theory of non-Newtonian fluids 

of second grade or ‘Rivlin-Ericksen fluids’ ( Rivlin and Ericksen, 

1997; Dunn and Fosdick, 1974; Truesdell and Rajagopal, 2010 ) 

can be drawn. This parameterization has been successfully im- 

plemented in quasi-geostrophic models, showing improvement 

in the mean flow, its variability and energy transfer between 

scales ( Zanna et al., 2017 ). The parameterization is currently 

being developed for primitive-equation ocean models ( Anstey and 

Zanna, 2017; Zanna et al., 2017 ). Anstey and Zanna (2017) show 

that some properties of QG turbulence are adequately captured 

by the parametrization. The aim of this paper is to obtain the 

parameterization of Porta Mana and Zanna (2014) , including the 

nondimensional constant, using only assumptions of local homo- 

geneity and rapid spatial decorrelation of the subgrid-scale term. 
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2. Theoretical development 

In a quasigeostrophic (QG) model, the equation for potential 

vorticity (PV) evolution in a single layer is 

Dq n 

Dt 
= D n + F n (1) 

where the QG PV in the i th layer is q n , F n denotes forcing (e.g. via 

wind stress), and D n denotes a dissipation operator acting to re- 

move enstrophy at small scales. The QG PV in the n th layer in- 

cludes planetary, relative and stretching vorticity terms, such that 

it is linearly related to the streamfunction ψ n in all layers, and 

to the relative vorticity ∇ 

2 ψ n . The advective derivative takes the 

form 

D 

Dt 
= ∂ t + u n · ∇ (2) 

where u n = (−∂ y ψ n , ∂ x ψ n ) . 

We will assume that a system of equations of the form (1) gov- 

erns the dynamics at all scales, and approximate solutions can 

be computed using numerical simulations with sufficiently high 

resolution. The computational cost of these simulations can be 

prohibitive. Eddy-permitting models use spatial resolution high 

enough to permit, but not to completely resolve typical mesoscale 

eddies. 

The goal is to design a numerical method that accurately sim- 

ulates the resolvable scales in a model with eddy-permitting res- 

olution, with a grid-box roughly equal to the Rossby radius of de- 

formation. To that end we begin by constructing a set of partial 

differential equations governing the resolvable part of the true so- 

lution. We therefore apply a time-independent spatial low-pass fil- 

ter denoted · to Eq. (1) 

D q n 
Dt 

= ∂ t q n + u n · ∇ q n = S ∗n + D 

∗
n + F n . (3) 

The dissipation term D 

∗
n in the large-scale evolution is often not 

equal to the low-pass filtered original dissipation term D n ; for 

example, the viscosity is often increased to help keep solutions 

smooth. The eddy source term has the form 

S ∗n = u n · ∇ q n − u n · ∇q n + D n − D 

∗
n . (4) 

Porta Mana and Zanna (2014) ran well-resolved simulations of 

QG dynamics with different forcing and dissipation, applied a low- 

pass spatial filter to the results, and diagnosed the eddy source 

terms S ∗n directly. They compared it to a variety of parameteriza- 

tions, and discovered that the data is in excellent agreement with 

a new parameterization of the form 

S ∗n ≈ −( 0 . 45�x ) 
2 ∇ 

2 D q n 
Dt 

(5) 

where �x is the grid size of the eddy-permitting numerical model, 

which is related to the length scale of the low-pass spatial filter ·. 
The parametrization relies on analogy between the truncated tur- 

bulent stresses and non-Newtonian stresses, arguing the need for 

some spatial coherence and infinitesimal memory ( Rivlin and Er- 

icksen, 1997 ). 

The goal of this section is to present a derivation of the above 

parameterization using the following two fundamental assump- 

tions: 

• The eddy source term is rapidly-decorrelating in space. 
• The eddy source term is locally-spatially-homogeneous. 

The precise meaning of these assumptions will become clear in 

the course of the derivation. Without loss of generality, we con- 

sider for the remainder of this section only the top layer n = 1 and 

drop subscripts. 

First, apply the Laplacian to (3) 

∇ 

2 D q 

Dt 
= ∇ 

2 S ∗ + ∇ 

2 (D 

∗ + F ) . (6) 

Our assumption that S ∗ is rapidly-decorrelating in space implies 

that it is dominated by small scales rather than by large-scale pat- 

terns. This assumption is supported by Fig. 5a in Porta Mana and 

Zanna (2014) . The Laplacian of a field dominated by small scales 

is large, and we expect the Laplacian of the forcing term to be 

negligible by comparison. Dissipation specifically occurs at small 

scales, so it is not clear a priori that the Laplacian of the dissi- 

pation term should be smaller than the Laplacian of S ∗. Neverthe- 

less, in our experiments described below this is the case, and in 

Porta Mana and Zanna (2014 , Fig. 5d) the dissipation term is found 

to be much smaller than S ∗. Grooms et al. (2015) provide heuris- 

tic arguments and supporting evidence that S ∗ has a Fourier spec- 

trum growing as the 5th power of the wavenumber, which is very 

strongly dominated by the small scales, evidently more so even 

than the dissipation term. Thus, we make the following approxi- 

mation, which ignores the Laplacian of the forcing and dissipation 

terms in Eq. (6) 

∇ 

2 D q 

Dt 
≈ ∇ 

2 S ∗. (7) 

We now consider the second-order centered finite-difference 

approximation to the Laplacian of S ∗, as used by Porta Mana and 

Zanna (2014) in their diagnostics. Let S ∗
i, j 

be the value of S ∗ at the 

location ( i �x, j �x ) on an equispaced grid in the top layer. The 

second-order centered finite-difference approximation to S ∗ at the 

location ( i �x, j �x ) is 

∇ 

2 S ∗| i, j ≈ L i, j = 

1 

�x 2 

[
S ∗i, j+1 + S ∗i −1 , j −4 S ∗

i, j 
+ S ∗

i +1 , j 
+ S ∗

i, j−1 

]
. (8) 

We now seek a linear relationship between ( �x ) 2 L i, j and S ∗
i, j 

that 

will allow us to write (c�x ) 2 L i, j ≈ S ∗
i, j 

, i.e. ( c �x ) 2 ∇ 

2 S ∗ ≈ S ∗. Such 

a relationship immediately implies S ∗ ≈ (c�x ) 2 ∇ 

2 D q /Dt . 

The assumption of local homogeneity implies that S ∗
i, j 

is a 

random variable with distribution approximately the same as its 

neighbors. The assumption of rapid spatial decorrelation implies 

that S ∗
i, j 

is approximately uncorrelated with its neighbors. We can 

interpret this result by arguing that by taking the Laplacian of S ∗

(equivalently of D q /Dt, according to Eq. (7) ), we are introducing in- 

formation from neighboring grid cells, that are approximately un- 

correlated with that grid cell. The introduction of such informa- 

tion implies some random-process model for the eddy closure. We 

do not expect S ∗
i, j 

to be completely uncorrelated with its neigh- 

bors, since that would imply a complete scale separation between 

resolved and unresolved scales, which is unrealistic in the eddy- 

permitting regime where resolved and unresolved scales are both 

part of an inertial range of scales; nevertheless, to simplify analysis 

we assume that the correlations are small enough to be negligible. 

The eddy source term S ∗
i, j 

and the scaled finite-difference Lapla- 

cian �x 2 L i, j are jointly-distributed random variables, and under 

these assumptions we can derive their covariance matrix, which 

has the form 

� = Cov 

[(
S ∗

i, j 

�x 2 L i, j 

)
, 

(
S ∗

i, j 

�x 2 L i, j 

)]
= σ 2 

[
1 −4 

−4 20 

]
, (9) 

where σ 2 is the variance of S ∗
i, j 

and its neighbors. The diagonal 

entries are the variances of S ∗
i, j 

and �x 2 L i, j , and the off-diagonal 

entries are the cross-covariance. 

This covariance matrix is associated with an ellipse whose axes 

are aligned with the eigenvectors of the covariance matrix. The 

eccentricity 0 ≤ ε ≤ 1 of an ellipse quantifies how flat it is: if 

ε = 0 the ellipse is a circle, and if ε = 1 then the ellipse is simply a 
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