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a b s t r a c t

The relative importance of pendulum mechanics and muscle mechanics in chewing dynamics has im-
plications for understanding the optimality criteria driving the evolution of primate feeding systems. The
Spring Model (Ross et al., 2009b), which modeled the primate chewing system as a forced mass-spring
system, predicted that chew cycle time would increase faster than was actually observed. We hypoth-
esized that if mandibular momentum plays an important role in chewing dynamics, more accurate es-
timates of the rotational inertia of the mandible would improve the accuracy with which the Spring
Model predicts the scaling of primate chew cycle period. However, if mass-related momentum effects are
of negligible importance in the scaling of primate chew cycle period, this hypothesis would be falsified.
We also predicted that greater “robusticity” of anthropoid mandibles compared with prosimians would
be associated with higher moments of inertia. From computed tomography scans, we estimated the
scaling of the moment of inertia (Ij) of the mandibles of thirty-one species of primates, including 22
anthropoid and nine prosimian species, separating Ij into the moment about a transverse axis through
the center of mass (Ixx) and the moment of the center of mass about plausible axes of rotation. We found
that across primates Ij increases with positive allometry relative to jaw length, primarily due to positive
allometry of jaw mass and Ixx, and that anthropoid mandibles have greater rotational inertia compared
with prosimian mandibles of similar length. Positive allometry of Ij of primate mandibles actually lowers
the predictive ability of the Spring Model, suggesting that scaling of primate chew cycle period, and
chewing dynamics in general, are more strongly influenced by factors other than scaling of inertial
properties of the mandible, such as the dynamic properties of the jaw muscles and neural control.
Differences in cycle period scaling between chewing and locomotion systems reinforce the suggestion
that displacement and force control are more important in the design of feeding systems than energetics
and speed.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Investigations of the determinants and consequences of size-
related changes (scaling) in the periodicity of cyclic movements
provide important insights into the design (formefunction re-
lationships) of musculoskeletal systems (McMahon, 1975; Heglund
and Taylor, 1988; Biewener, 2005; More et al., 2010; Norberg and
Aldrin, 2010; Hooper, 2012; Kilbourne and Hoffman, 2013). Much

of this work has focused on the scaling of step cycle period in lo-
comotor systems (Cavagna et al., 1997; Marsh et al., 2004; Raichlen,
2004; Modica and Kram, 2005; Pontzer, 2007; de Ruiter et al.,
2013), reflecting the large proportion of overall energy budgets
expended on locomotion (McNab, 2002), the large proportions of
locomotor energetics spent on the internal work of relative
movement of limbs and trunk (Pontzer, 2007), and the importance
of locomotion for foraging and predator avoidance (Reilly et al.,
2007). In comparison with studies of the locomotor system, less
attention has been paid to the scaling of cycle periods in the
chewing system (Fortelius, 1985; Druzinsky, 1993; Gerstner and
Gerstein, 2008). The chewing system provides an interesting* Corresponding author.
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contrast with the locomotor system because its smaller size means
that the overall energy costs of chewing are much lower than those
of locomotion, suggesting that in the feeding system, optimizing
energetic efficiency may be less important than optimizing control
of force and displacement (Ross et al., 2009b). Here we use scaling
analyses of the moment of inertia of primate mandiblesdthe
resistance of the mandible to elevation and depression rotations
during chewingdto argue that primate chew cycle period is more
strongly influenced by factors such as the dynamic properties of the
jaw muscles and neural control than by mandibular inertial prop-
erties. In addition, we argue that differences in cycle period scaling
between chewing and locomotion systems reinforce the suggestion
that displacement and force control are more important in the
design of feeding systems than energetics and speed.

1.1. Scaling of mammal step cycle period

The scaling relationships between limb length and oscillation
frequency are often explained with reference to pendular me-
chanics (for reviews see [Kilbourne and Hoffman, 2013, 2015;
Kilbourne, 2014]). The cycle period of a simple pendulum (Tp)1da
pendulumwith all its mass (Mp) concentrated at the center of mass
(CoM) suspended at a distance Lp from the axis of rotation by a
massless roddis related to Lp and the acceleration due to gravity (g)
by Equation (1).

Tp ¼ 2p
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The numerator is either a torque representing the moment of
inertia (resistance to rotation) of the pendulum (Ip) or Lp, a variable
proportional to Ip, and the denominator is the driving torque, in this
case gravity acting on pendular mass. Exponents for scaling re-
lationships between limb step cycle periods and limb lengths that
are close to ½ have often been interpreted as support for the
importance of pendular mechanics in the dynamics of mammalian
limbs (Pennycuick, 1975; Alexander, 2003). Importantly, however,
an exponent of ½ does not require that pendular motion be driven
by gravity. Indeed, not all models of limb step cycle period scaling
include gravity in the denominator. McMahon's (1975) influential
estimate of the scaling of the natural period of limb oscillations in
galloping mammals excludes gravity driven angular momentum
altogether in favor of the driving torques of the limb muscles:
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Here, the driving torque in the denominator consists of kL, the
spring constant of the limb muscles, acting about bL, the
limb muscle lever arm. The muscle spring constant kL is equal to
ApcsaE/Lm, where Apcsa is muscle physiological cross-sectional area
(PCSA), Lm is muscle length, and E is “the slope of the stress/strain
curve for the stimulated muscle” (McMahon, 1975). In support of
modeling muscle properties with spring constants, the spring

properties of muscles are widely acknowledged to confer not only
energetic savings (McMahon, 1975; Lee and Farley, 1998), but also
advantages for motor control of oscillating systems (Houk and
Rymer, 1981; Nichols, 2002).

A richer understanding of the behavior of oscillating musculo-
skeletal systems emerges from simultaneous consideration of both
gravity driven angular momentum and muscle properties in the
same model. Turvey et al. (1988) presented a hybrid mass-spring/
simple pendulum model in which the numerator is again the
moment of inertia of a simple pendulum and the denominator
includes both a gravity-driven angular momentum torque, MLg,
and amuscular spring-driven torque, kb2 (Fig.1). The natural period
of this system is described by their “equation of the pendular
clocking mode”:

T0 ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ML2

MLg þ kb2

s
: (3)

Turvey et al. (1988) hypothesized that the relative importance of
angular momentum and muscle properties changes with system

Figure 1. A. Turvey et al.'s (1988) hybrid mass-spring/simple pendulum model,
together with the equation describing its natural period. The pendulum is a stiff,
weightless rod of length Lp carrying a mass, Mp; a spring attached at distance b from
the axis of rotation provides a restoring torque; gravity, g, acting on M at length L
provides the driving torque. B. Spring Model of the jaw system presented by Ross et al.
(2009b), together with the equation describing its natural period. L is jaw length, be
and bd are the jaw elevator and depressor lever arms respectively, and k ¼ EAe/Lm is a
spring constant representing the jaw-elevator muscles, where E is muscle stiffness, Ae

is physiological cross-sectional area of the muscle, and Lm is muscle length (McMahon,
1975, 1984).

1 Fractions are used to express scaling exponents predicted by theory and deci-
mals to express exponents estimated empirically. A complete list of abbreviations
and dimensionality of terms is presented in Table 1.
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