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ARTICLE INFO ABSTRACT

Soil organic matter (SOM) is an important index to evaluate soil fertility. Knowing the spatial distribution of
SOM and its controlling factors at different scales is basic to sustainable farmland management. The variability
was explored mostly in plain farmlands or at small scales in previous studies. In the present study, combined
with anisotropy analysis (AA) and discrete wavelet transform (DWT), we examined the spatial variability of SOM
and its controlling factors at various scales in a mountainous area. Transect with dominant directions (major axis
and minor axis) of SOM variability was extracted using AA and then the scale-specific variability was examined
using DWT. Dominant factors of SOM variability at different scales were identified using correlation coefficients
between SOM at different scales and various soil environmental factors. The results showed that the major axis
along which SOM varied the most was 24° south by west, consistent with the strike of Wuling Mountains. The
minor axis was perpendicular to the major axis direction. DWT separated the SOM variations into nine scale
components (eight details, D1 through D8, and one approximation, A8) along the major axis and into eight scale
components (seven details, D1 through D7, and one approximation, A7) along minor axis. The largest-scale
component (A8 in major axis and A7 in minor axis) explained the most variance of SOM along both axes,
accounting for half of the total variance. Compared with the original SOM before separation of scale components
(undecomposed SOM), the scale components showed significant correlation with environmental factors. Both
elevation and mean annual precipitation had positive correlation with SOM at large scales. However, there was a
negative correlation between SOM and mean annual temperature. This indicates that the topography and local
climate may have a stronger influence in controlling SOM spatial distribution in mountain regions. The re-
lationship provides important information on environmental covariate selection in mapping soil resource. The
combination of AA and DWT shows promise quantifying SOM spatial distribution and its control factors at
different scales in mountainous areas.
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1. Introduction environmental variables through the digital soil mapping (DSM)

(Grimm et al., 2008). These environmental variables include structural

Soil organic matter (SOM) is a key indicator in the global carbon
cycle (Marchant et al., 2015). Knowledge of SOM spatial variation is
essential for soil landscape process modeling, soil quality assessment,
precision agriculture and environmental management (Yong, 2010).
However, spatial variability of SOM is controlled by various individual
or combined soil-forming factors and processes, including natural fac-
tors and human activities with complex pedogenic processes, as they
change across the landscape (Corstanje et al., 2007; Lal, 2009;
Hartemink and Bockheim, 2013). Numerous studies have shown that
the spatial distribution of SOM can be predicted by correlating ancillary
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such as topography, vegetation, climate and soil type, and random such
as land use, management and production activities by human
(Mcbratney et al., 2003; Franklin et al., 2003; Zhang et al., 2012; Hu
et al., 2014). High-precision DSM depends on the selection of variables
and understanding of their relationship with SOM. Though the high
quality environmental variables are becoming more and more avail-
able, the interdependent nature makes it difficult to identify most
dominant factors on SOM distribution and is a challenge of DSM fra-
mework (Poggio et al., 2013). Given that the factors and processes do
not vary at a point rather over space, soil properties show different
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Fig. 1. Geographic location of the study area and the distribution of sampling points with topographic variations (a), the proportion of area and sample numbers in each soil type (b) Note:
AT: Anthrosols; DL: Dystric Luvisols; CA: Chromic Acrisols; HL: Haplic Luvisols; LC: Leptic Cambisols; CF: Calcaric-Fluvisols.

spatial variations and response relationships with the controlling fac-
tors at different scales (Vanwalleghem et al., 2013; Huang et al., 2015;
Zhou et al., 2016).

Numerous methods, such as classical statistics, geostatistics, fractal
theory and spectral analysis, have been developed and used to quantify
the spatial variability of soil properties at different scales (Webster and
Oliver, 2001; Zhang et al., 2014; Reza et al., 2015). Classical statistics
describe this variability using the coefficient of variation, and are sui-
table for a situation without spatial structure (Lacasse et al., 2007).
Geostatistics methods have been widely applied in soil science. The
semivariogram, the central tool of geostatistics, can quantify the scale
and intensity of spatial variation of properties under consideration. It
can also be used in an exploratory manner to discover underlying
causes of the variation (Oliver, 2010). However, the method must be in
accord with intrinsic hypotheses and the fitting curve is greatly influ-
enced by subjective randomness (Goovaerts, 1998; Mabit et al., 2008).
Fractal theory is introduced into the soil spatial variability in the 1980s.
It reflects the complexity of the variable space distribution structure,
but it is useless for which soil properties do not have self-similarity
characteristics (Zeleke and Si, 2006). Spectral analysis reveals the scale
effect of the data sequence by converting scale to a frequency range by
Fourier transform. For example, it has been used to extract periodic
patterns in gilgai soils in Australia (Webster and Oliver, 2001). How-
ever, spectral analysis must meet stationarity conditions in the spatial
sequence, and spectrum coherence cannot evaluate the relevance of the
scale of two sequences with different frequency distributions. Besides
the spatial similarity and periodicity, non-stationarity is one of the
characteristics of property spatial of soil properties but has not been
considered widely.

The wavelet transform (WT) is an advanced mathematical method
that provides scale and location information for spatial variation (Si and
Zeleke, 2005; Zeleke and Si, 2006; Lark, 2016), and is suitable for the
study of multiscale stationary/nonstationary soil processes occurring
over a finite spatial domain (Graps, 2010). It has been used to examine

scale-dependent spatial heterogeneity of soil properties (Biswas et al.,
2013). The WT can be divided into continuous wavelet transform
(CWT) and discrete wavelet transform (DWT), each with its own ad-
vantages and disadvantages (Shu et al., 2008). Multi-resolution analysis
using DWT can visualize soil variations orthogonally at different spatial
scales (Lark and Webster, 1999). The Pearson correlation coefficient is a
common measure of linear correlation between two variables at mea-
surement scale. Some researchers have successfully used DWT and
Pearson correlation to separate SOM variations at different scales and
identify the dominant controls on SOM at those scales (Lark and
Webster, 2005; Lark, 2005; Zhou et al., 2016).

The anisotropy is often unavoidable because the variations in SOM
may dominate in some specific directions. The variogram shows dif-
ferent length scales in different directions by fitting a model to the
spatial correlation or continuity. The major direction or minor direction
along the variogram ranges are expected to be the longest or the
smallest among all directions. It can be examined using a directional
variogram, which is useful in assessing anisotropy degree (Biswas et al.,
2014). Some various anisotropic analyses (AA) methods were used to
identify representative transacts. Simon (1997) calculated spatial de-
pendence along different directions in polar coordinates allowing exact
significance testing. Another way is by calculating the semivariogram of
target properties at different directions and by fitting the ranges using
an ellipse. The direction of the major and the minor range of the ellipse
represent the longest and the shortest distance of auto-correlation, re-
spectively. Although the dominant directions of variation can be de-
termined by the above methods, it is still difficult to select re-
presentative transect because of countless parallels along a specific
direction (Huang et al., 2015).

The objectives of the present study were to examine the scale-spe-
cific spatial variability of SOM and its dominant controls at leading
directions in mountainous areas by combining AA and DWT. SOM data
were collected from Wuling mountain areas of central-south China. The
relationships between SOM and environmental factors were examined
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