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A B S T R A C T

Soil spatial variability has become the rule rather than the exception; it is the consequence of spatial depen-
dence, periodicity, nonstationarity, and nonlinearity. The continuous wavelet transform (CWT) has been ex-
tremely useful in revealing scale- and location-specific information of nonstationary soil spatial variation. The
Hilbert–Huang transform (HHT) has also been used in soil science to reveal scales and locations of variations in
soil properties. These variations may be controlled by the underlying soil processes that can also be represented
using a linear or nonlinear equation/function. The objective of this manuscript was to compare the inherent
strengths and weaknesses of CWT and HHT in quantifying scale- and location-specific soil spatial variation.
Examples using four simulated spatial series (stationary–linear, stationary–nonlinear, nonstationary–linear, and
nonstationary–nonlinear) and two real world measurements of soil properties (organic carbon and soil water
storage) were used to compare the methods. With its algorithmic basis, HHT identified the scale components
present in the spatial series more flexibly, while the redundancy in CWT identified a diffuse band of scales as it is
based on an underlying mathematical model. Additionally, the CWT identified variations that were biased to-
wards large scales. The HHT used a more flexible basis for interpreting real data and could deal with nonlinear
issues, while CWT could not. A similar result was also observed for soil organic carbon and soil water storage.
Both methods could produce certain levels of information but the choice should be made based on the type of
information that is required while taking into consideration the underlying assumptions. For example, to
quantify the scale- and location-specific spatial variability of soil properties as controlled by soil processes which
can be represented by a nonlinear equation, one achieves benefits from using HHT rather than CWT. In this case
study, HHT showed superior performance in identifying scales and locations of soil spatial variability over CWT.
In this study, HHT is compared with CWT only and needs further comparison with other types of wavelet
analysis.

1. Introduction

Soil spatial variability has become the rule, not the exception, and is
generally a product of the combined effect of soil physical, chemical,
and biological processes that operate in different intensities and at
different scales (Goovaerts 1998). Adequate understanding of soil
variability as a function of space and scale is necessary for environ-
mental prediction, precision agriculture, soil quality assessment, and
natural resource management (Trangmar et al. 1985; Goderya 1998). A
detailed description of soil spatial variability also provides critical in-
formation for the development of various logical, empirical, and phy-
sical models of soil landscape processes (Corwin et al. 2006).

Since the classic study of Nielsen et al. (1973), the systematic study
of soil spatial variability has identified various complex issues, such as
spatial dependence, periodicity, nonstationarity, and nonlinearity.
While the similarity between two points can be dependent on the

separation distance (spatial dependence), similarity can vary in a cy-
clical pattern (periodicity) or exhibit long increasing/decreasing trends
(nonstationarity). Similarly, soil spatial variation controlled by pro-
cesses can also be represented by a linear/nonlinear function/equation
(nonlinearity) (Biswas and Si 2011a). Geostatistical analysis can mea-
sure the spatial dependence based on autocorrelation (Trangmar et al.
1985). In spectral analysis, a spatial series with periodicity is compared
with the cyclic Fourier series (e.g. sine or cosine wave) and the char-
acteristic period (=1/frequency) of the series is used to represent the
scale of underlying processes creating the periodic variability
(Brillinger 2001). These analyses are based on a subtle assumption of
stationarity in the spatial data that means the statistical properties of
the variable under consideration depend on their relative locations.
Thus, these analyses lose spatial information during the conversion to
scale information. Often, soil spatial variations exhibit nonstationary
trends in the spatial data arising from smooth and predictable linear
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and non-linear trends. Additionally, soil processes operating at different
scales may be localized in space relative to the entire spatial domain (Si
2003). The nonstationarity and scale-localization restrict the use of
geostatistics and spectral analysis for quantifying soil spatial variation
(Oliver and Webster 1991; Goderya 1998).

Wavelet analysis has been used for almost two decades to study
multi–scale (Bosch et al. 2004) soil spatial variability exhibiting sta-
tionary/nonstationary characteristics (Lark and Webster 1999; Lark
et al. 2004; Si and Farrell 2004; Neupauer and Powell 2005; Biswas
et al. 2008; Biswas and Si 2011c; 2011a; Biswas et al. 2013b; Biswas
2014; She et al. 2016; Tarquis et al. 2017). It partitions the total var-
iation into positions (or locations) and frequencies (or scales) and thus,
can deal with nonstationarity trends and scale-localization. There are
several types of wavelet analyses, such as continuous wavelet transform
(CWT), discrete wavelet transform (DWT), maximum overlap discrete
wavelet transform (MODWT) and wavelet packet transform (WPT).
These are a suite of tools used for different purposes, each with inherent
advantages and disadvantages (Graps 1995; Percival and Walden 2000;
Biswas and Si 2011a; Zhang et al. 2016). CWT is particularly suited for
scale analysis as it partitions the overall variations in a spatial series
into continuous scales and locations and has been widely used in soil
science (Lau and Weng 1995; Si and Zeleke 2005). A comprehensive
review on the applications of CWT in soil science can be found in
Biswas and Si (2011a).

While CWT has proven to be extremely useful in revealing the un-
derlying variability of any soil properties, it embodies the assumption
that the spatial series as the realization of the underlying processes can
then be represented by linear equations (Huang et al. 1998). In a linear
system, generally the overall response is equal to the linear sum of
individual responses or processes. In complex natural systems, how-
ever, the total effect from multiple processes may be non–additive due
to the interactive and complementary positive or negative effects. In
this situation, the principle of superposition does not apply and the
overall system is known to be nonlinear (Yan and Gao 2007; Biswas
et al. 2013b). The Hilbert-Huang transform (HHT) is known to char-
acterize time-frequency variations in a series that exhibits both non-
stationarity and nonlinearity (Huang et al. 1998) and thus, has been
extended to explore the scale–location specific information of a spatial
series in soil science (Biswas et al. 2009; Biswas and Si 2011d; Zhou
et al. 2016). The main advantage of HHT is that it can identify the
hidden physical trends directly from data without imposing any
mathematical rules (unlike mother wavelet in CWT) in the analysis.
Unlike other methods, HHT does not have any a priori basis; rather it is
intuitive, direct, adaptive and completely data driven (Huang et al.
1998). It not only extracts information on scale-localization and large
trends from a nonstationary series, it identifies instantaneous scales
from instantaneous frequency, a local frequency and deal with non-
linearity (Huang et al. 1998; Kijewski-Correa and Kareem 2006). CWT
has also been tested to calculate instantaneous scales (Kijewski-Correa
and Kareem 2006; Biswas et al. 2013b) using a modified Morlet wa-
velet. However, due to the mathematical complexity and the unavail-
ability of a common computer program, CWT using the regular Morlet
wavelet is still the most widely used method for identifying scale- and
location-specific variations in soil science. While CWT has been widely
used in soil science to quantify scale-location variability, HHT is in-
creasing in use. However, before it can be widely accepted, the method
needs a comprehensive comparison with the currently available and
widely-used methods, such as CWT. Therefore, the main objective of
this study was to compare the relative merits of CWT and HHT in re-
vealing scale–location specific variations.

In comparing the methods, the manuscript was divided into three
parts. Part one provided a brief description of both methods while part
two compared both methods using several types of artificial spatial
series. Finally, two examples of soil properties (soil organic carbon and
soil water storage) were used to compare the methods in identifying
scale–location specific variations. The methods were compared based

on their ability to accurately identify dominant scales; to determine if
there was any bias towards identifying a scale (e.g. large scale, small
scale); to assess their ability to deal with nonstationary and nonlinear
spatial series, and the physical meaning (or significance) of the iden-
tified scales.

2. Methodology

2.1. Continuous wavelet transform (CWT)

The CWT decomposes the overall variations in a spatial series into
distinct locations (sample positions) as a function of continuous scales.
Different wavelet functions, such as Haar, Mexican Hat, and Morlet can
be used to calculate wavelet coefficients. These functions are called the
mother wavelet function that can be stretched or contracted in space (x)
and at different scales (s). The detailed theoretical description of CWT is
well established in the literature and is beyond the scope of this paper.
For the readers' interest, full descriptions can be found in Farge (1992)
and Kumar and Foufoula-Georgiou (1997) among many others. Briefly,
CWT can be defined as the convolution of a spatial series Yi of length N
(i= 1, 2, ∙ ∙ ∙, N) along a transect with equal increments of distance δx
(Torrence and Compo 1998),

∑= ⎡
⎣

− ⎤
⎦=

W s δx
s

Y ψ j i δx
s

( ) ( )i
Y

j

N

j
1 (1)

which can be implemented through a series of Fast Fourier Transform
(FFT). The function ψ[]is the mother wavelet function or ‘basic wa-
velet’. The parameter s is the dilation–contraction factor and it is as-
sociated with scales. It is often determined as fractional powers of two;
sj = s02jδj, j = 0, 1, …, J where s0 is the smallest resolvable scale and J
determines the largest scale, J = δj−1 log2 (Nδx/s0). Wavelet coeffi-
cients,Wi

Y(s) are expressed as a + ib., where a and b are the real and
imaginary components of Wi

Y(s), respectively. The energy (strength of
variation) associated with each scale and location can be calculated
from the magnitude of wavelet coefficients (Qi and Neupauer 2008).
Like the Fourier power spectrum, the wavelet power spectrum can be
calculated as|Wi

Y(s)|2. These wavelet power spectra are a function of
scales and locations. Therefore, a better visualization of power spectra
can be given by a contour plot with locations on the horizontal axis and
scales on the vertical axis. The wavelet spectrum at a location and scale
represents the local variance, and the sum of all local spectra is equal to
the total variance. Therefore, it can be used to examine the scale–lo-
cation specific variations in soil properties.

2.2. Hilbert–Huang transform (HHT)

The HHT is a two–step method. The first step, empirical mode de-
composition (EMD), separates the variations present in a spatial series
according to their characteristic scales. It decomposes the overall spa-
tial pattern into a finite and often small number of intrinsic modes that
are known as intrinsic mode functions (IMFs). Each IMF represents a
characteristic scale of variability. In the second step, the
Hilbert–spectral analysis (HSA), the instantaneous scales are calculated
after applying the Hilbert transform to each IMF. The energy is calcu-
lated from the instantaneous amplitude, a product of Hilbert transform
and is a function of scale and location. Detailed theory on HHT can be
found in Huang et al. (1998) and Huang and Wu (2008).

Briefly, IMFs are extracted through a sifting process (Fig. 1). For a
spatial series, Y(x), one can identify the local maxima and local minima
(Fig. 2). The maxima and minima are then joined by a cubic spline line
to create the upper (UE) and lower (LE) envelope (Fig. 2). The mean
value of the envelopes m1=(UE+LE)/2can be calculated locally and
subtracted from the original spatial series to get the first prototype
h1(x)=Y(x)−m1(x), which is a function of space. This prototype will
be an IMF provided it has satisfied the following conditions: 1) the
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